185 research outputs found

    Inappropriate Ventilatory Homeostatic Responses in Hospitalized COVID-19 Patients

    Get PDF
    Background: The clinical presentation of COVID-19 suggests altered breathing control - tachypnoea, relative lack of dyspnoea, and often a discrepancy between severity of clinical and radiological findings. Few studies characterize and analyse the contribution of breathing drivers and their ventilatory and perceptual responses. Aim: To establish the prevalence of inappropriate ventilatory and perceptual response in COVID-19, by characterizing the relationships between respiratory rate (RR), dyspnoea and arterial blood gas (ABG) in a cohort of COVID-19 patients at presentation to hospital, and their post-Covid respiratory sequelae at follow-up. Methods: We conducted a retrospective cohort study including consecutive adult patients admitted to hospital with confirmed COVID-19 between 1st March 2020 and 30th April 2020. In those with concurrent ABG, RR and documented dyspnoea status on presentation, we documented patient characteristics, disease severity, and outcomes at hospital and 6-week post-discharge. Results: Of 492 admissions, 194 patients met the inclusion criteria. Tachypnoea was present in 75% pronounced (RR>30) in 36%, and persisted during sleep. RR correlated with heart rate (HR) (r = 0.2674), temperature (r = 0.2824), CRP (r = 0.2561), Alveolar-arterial (A-a) gradient (r = 0.4189), and lower PaO2/FiO2 (PF) ratio (r = -0.3636). RR was not correlated with any neurological symptoms. Dyspnoea was correlated with RR (r = 0.2932), A-a gradient (r = 0.1723), and lower PF ratio (r = -0.1914), but not correlated with PaO2 (r = -0.1095), PaCO2 (r = -0.0598) or any recorded neurological symptom except for altered consciousness. Impaired ventilatory homeostatic control of pH/PaCO2 [tachypnoea (RR>20), hypocapnia (PaCO2 7.45)] was observed in 29%. This group, of which 37% reported no dyspnoea, had more severe respiratory disease (A-a gradient 38.9 vs. 12.4 mmHg; PF ratio 120 vs. 238), and higher prevalence of anosmia (21 vs. 15%), dysgeusia (25 vs. 12%), headache (33 vs. 23%) and nausea (33 vs. 14%) with similar rates of new anxiety/depression (26 vs. 23%), but lower incidence of past neurological or psychiatric diagnoses (5 vs. 21%) compared to appropriate responders. Only 5% had hypoxia sufficiently severe to drive breathing (i.e. PaO2 <6.6 kPa). At 6 weeks post-discharge, 24% (8/34) showed a new breathing pattern disorder with no other neurological findings, nor previous respiratory, neurological, or psychiatric disorder diagnoses. Conclusions: Impaired homeostatic control of ventilation i.e., tachypnoea, despite hypocapnia to the point of alkalosis appears prevalent in patients admitted to hospital with COVID-19, a finding typically accompanying more severe disease. Tachypnoea prevalence was between 12 and 29%. Data suggest that excessive tachypnoea is driven by both peripheral and central mechanisms, but not hypoxia. Over a third of patients with impaired homeostatic ventilatory control did not experience dyspnoea despite tachypnoea. A subset of followed-up patients developed post-covid breathing pattern disorder

    Neuroimaging of Sudden Unexpected Death in Epilepsy (SUDEP): Insights From Structural and Resting-State Functional MRI Studies

    Get PDF
    The elusive nature of sudden unexpected death in epilepsy (SUDEP) has led to investigations of mechanisms and identification of biomarkers of this fatal scenario that constitutes the leading cause of premature death in epilepsy. In this short review, we compile evidence from structural and functional neuroimaging that demonstrates alterations to brain structures and networks involved in central autonomic and respiratory control in SUDEP and those at elevated risk. These findings suggest that compromised central control of vital regulatory processes may contribute to SUDEP. Both structural changes and dysfunctional interactions indicate potential mechanisms underlying the fatal event; contributions to individual risk prediction will require further study. The nature and sites of functional disruptions suggest potential non-invasive interventions to overcome failing processes

    Orienting to fear under transient focal disruption of the human amygdala

    Get PDF
    Responding to threat is under strong survival pressure, promoting the evolution of systems highly optimised for the task. Though the amygdala is implicated in detecting threat, its role in the action that immediately follows-orienting-remains unclear. Critical to mounting a targeted response, such early action requires speed, accuracy, and resilience optimally achieved through conserved, parsimonious, dedicated systems, insured against neural loss by a parallelized functional organisation. These characteristics tend to conceal the underlying substrate not only from correlative methods but also from focal disruption over time scales long enough for compensatory adaptation to take place. In a study of six patients with intracranial electrodes temporarily implanted for the clinical evaluation of focal epilepsy, here we investigate gaze orienting to fear during focal, transient, unilateral direct electrical disruption of the amygdala. We show that the amygdala is necessary for rapid gaze shifts towards faces presented in the contralateral hemifield regardless of their emotional expression, establishing its functional lateralisation. Behaviourally dissociating the location of presented fear from the direction of the response, we implicate the amygdala not only in detecting contralateral faces, but also in automatically orienting specifically towards fearful ones. This salience-specific role is demonstrated within a drift-diffusion model of action to manifest as an orientation bias towards the location of potential threat. Pixel-wise analysis of target facial morphology reveals scleral exposure as its primary driver, and induced gamma oscillations-obtained from intracranial local field potentials-as its time-locked electrophysiological correlate. The amygdala is here re-conceptualised as a functionally lateralised instrument of early action, reconciling previous conflicting accounts confined to detection, and revealing a neural organisation analogous to the superior colliculus, with which it is phylogenetically kin. Greater clarity on its role has the potential to guide therapeutic resection, still frequently complicated by impairments of cognition and behaviour related to threat, and inform novel focal stimulation techniques for the management of neuropsychiatric conditions

    Evaluating the Contributions of State of the Art Assessment Techniques to Predicting Memory Outcome after Unilateral Anterior Temporal Lobectomy

    Get PDF
    Purpose:Although anterior temporal lobectomy (ATL) is an effective treatment for many patients with medically refractory temporal lobe epilepsy (TLE), one risk associated with this procedure is postsurgical decline in memory. A substantial number of past studies examined factors that predict memory decline after surgery, but few have investigated multiple predictors simultaneously or considered measures that are currently in use. Methods: This study compared the relative contributions made by presurgical neuropsychological test scores, MRI-based hippocampal volumetric analysis, and Wada test results to predicting memory outcome after ATL in a group of 87 patients. Results: Logistic regression analyses indicated that noninvasive procedures (neuropsychological testing and MRI) made significant contributions to improving the prediction of memory outcome in this sample. The results from the Wada procedure did not significantly improve prediction once these other factors were considered. The only exception was in predicting memory for visual information after a delay, in which Wada results improved prediction accuracy from 78% to 81%. Conclusions: Current neuropsychological tests and MRI volumetric measures predict changes in verbal and visual memory after ATL. The relatively small change in correct classification rates when Wada memory scores are considered calls into question the benefits of using Wada test results to predict memory outcome when the results of noninvasive procedures are available

    Safety of intracranial electroencephalography during functional electromagnetic resonance imaging in humans at 1.5 tesla using a head transmit RF coil: Histopathological and heat-shock immunohistochemistry observations.

    Get PDF
    Simultaneous intracranial EEG and functional MRI (icEEG-fMRI) recordings in humans, whereby EEG is recorded from electrodes implanted inside the cranium during fMRI scanning, were made possible following safety studies on test phantoms and our specification of a rigorous data acquisition protocol. In parallel with this work, other investigations in our laboratory revealed the damage caused by the EEG electrode implantation procedure at the cellular level. The purpose of this report is to further explore the safety of performing MRI, including simultaneous icEEG-fMRI data acquisitions, in the presence of implanted intra-cranial EEG electrodes, by presenting some histopathological and heat-shock immunopositive labeling observations in surgical tissue samples from patients who underwent the scanning procedure. We performed histopathology and heat shock protein expression analyses on surgical tissue samples from nine patients who had been implanted with icEEG electrodes. Three patients underwent icEEG-fMRI and structural MRI (sMRI); three underwent sMRI only, all at similar time points after icEEG implantation; and three who did not undergo functional or sMRI with icEEG electrodes. The histopathological findings from the three patients who underwent icEEG-fMRI were similar to those who did not, in that they showed no evidence of additional damage in the vicinity of the electrodes, compared to cases who had no MRI with implanted icEEG electrodes. This finding was similar to our observations in patients who only underwent sMRI with implanted icEEG electrodes. This work provides unique evidence on the safety of functional MRI in the presence of implanted EEG electrodes. In the cases studied, icEEG-fMRI performed in accordance with our protocol based on low-SAR (≤0.1 W/kg) sequences at 1.5T using a head-transmit RF coil, did not result in measurable additional damage to the brain tissue in the vicinity of implanted electrodes. Furthermore, while one cannot generalize the results of this study beyond the specific electrode implantation and scanning conditions described herein, we submit that our approach is a useful framework for the post-hoc safety assessment of MR scanning with brain implants. [Abstract copyright: Copyright © 2022. Published by Elsevier Inc.

    Altered Relationship Between Heart Rate Variability and fMRI-Based Functional Connectivity in People With Epilepsy

    Get PDF
    Background: Disruptions in central autonomic processes in people with epilepsy have been studied through evaluation of heart rate variability (HRV). Decreased HRV appears in epilepsy compared to healthy controls, suggesting a shift in autonomic balance toward sympathetic dominance; recent studies have associated HRV changes with seizure severity and outcome of interventions. However, the processes underlying these autonomic changes remain unclear. We examined the nature of these changes by assessing alterations in whole-brain functional connectivity, and relating those alterations to HRV.Methods: We examined regional brain activity and functional organization in 28 drug-resistant epilepsy patients and 16 healthy controls using resting-state functional magnetic resonance imaging (fMRI). We employed an HRV state-dependent functional connectivity (FC) framework with low and high HRV states derived from the following four cardiac-related variables: 1. RR interval, 2. root mean square of successive differences (RMSSD), 4. low-frequency HRV (0.04–0.15 Hz; LF-HRV) and high-frequency HRV (0.15–0.40 Hz; HF-HRV). The effect of group (epilepsy vs. controls), HRV state (low vs. high) and the interactions of group and state were assessed using a mixed analysis of variance (ANOVA). We assessed FC within and between 7 large-scale functional networks consisting of cortical regions and 4 subcortical networks, the amygdala, hippocampus, basal ganglia and thalamus networks.Results: Consistent with previous studies, decreased RR interval (increased heart rate) and decreased HF-HRV appeared in people with epilepsy compared to healthy controls. For both groups, fluctuations in heart rate were positively correlated with BOLD activity in bilateral thalamus and regions of the cerebellum, and negatively correlated with BOLD activity in the insula, putamen, superior temporal gyrus and inferior frontal gyrus. Connectivity strength in patients between right thalamus and ventral attention network (mainly insula) increased in the high LF-HRV state compared to low LF-HRV; the opposite trend appeared in healthy controls. A similar pattern emerged for connectivity between the thalamus and basal ganglia.Conclusion: The findings suggest that resting connectivity patterns between the thalamus and other structures underlying HRV expression are modified in people with drug-resistant epilepsy compared to healthy controls

    Structural imaging biomarkers of sudden unexpected death in epilepsy.

    Get PDF
    Sudden unexpected death in epilepsy is a major cause of premature death in people with epilepsy. We aimed to assess whether structural changes potentially attributable to sudden death pathogenesis were present on magnetic resonance imaging in people who subsequently died of sudden unexpected death in epilepsy. In a retrospective, voxel-based analysis of T1 volume scans, we compared grey matter volumes in 12 cases of sudden unexpected death in epilepsy (two definite, 10 probable; eight males), acquired 2 years [median, interquartile range (IQR) 2.8] before death [median (IQR) age at scanning 33.5 (22) years], with 34 people at high risk [age 30.5 (12); 19 males], 19 at low risk [age 30 (7.5); 12 males] of sudden death, and 15 healthy controls [age 37 (16); seven males]. At-risk subjects were defined based on risk factors of sudden unexpected death in epilepsy identified in a recent combined risk factor analysis. We identified increased grey matter volume in the right anterior hippocampus/amygdala and parahippocampus in sudden death cases and people at high risk, when compared to those at low risk and controls. Compared to controls, posterior thalamic grey matter volume, an area mediating oxygen regulation, was reduced in cases of sudden unexpected death in epilepsy and subjects at high risk. The extent of reduction correlated with disease duration in all subjects with epilepsy. Increased amygdalo-hippocampal grey matter volume with right-sided changes is consistent with histo-pathological findings reported in sudden infant death syndrome. We speculate that the right-sided predominance reflects asymmetric central influences on autonomic outflow, contributing to cardiac arrhythmia. Pulvinar damage may impair hypoxia regulation. The imaging findings in sudden unexpected death in epilepsy and people at high risk may be useful as a biomarker for risk-stratification in future studies

    Anfallssemiologie und Anfallstestung in der EEG-Monitoring-Einheit

    Get PDF
    Zusammenfassung Die genaue Beobachtung und Testung der unterschiedlichen Symptome epileptischer Anfälle trägt entscheidend zur Identifikation der symptomatogenen Zone bei. Diese Informationen sind insbesondere für die prächirurgische Epilepsiediagnostik relevant. Um Anfallssymptome möglichst detailliert zu erfassen, ist eine Testung während der Anfallsaufzeichnung in der EEG-Monitoring-Einheit erforderlich. Eine adäquate Anfallstestung setzt wiederum die Kenntnis der neurobiologischen Grundlagen der unterschiedlichen Anfallssymptome voraus. Der vorliegende Artikel soll eine Übersicht über typische Anfallssemiologien, die Entstehung ihrer Symptome und ihre Testung geben und als Leitfaden insbesondere für Mitarbeiter dienen, die neu in einer EEG-Monitoring-Einheit eingearbeitet werden

    Safety of Intracranial Electroencephalography During Functional Electromagnetic Resonance Imaging in Humans at 1.5 Tesla Using a Head Transmit RF Coil: Histopathological and Heat-Shock Immunohistochemistry Observations

    Get PDF
    OBJECTIVES: Simultaneous intracranial EEG and functional MRI (icEEG-fMRI) recordings in humans, whereby EEG is recorded from electrodes implanted inside the cranium during fMRI scanning, were made possible following safety studies on test phantoms and our specification of a rigorous data acquisition protocol. In parallel with this work, other investigations in our laboratory revealed the damage caused by the EEG electrode implantation procedure at the cellular level. The purpose of this report is to further explore the safety of performing MRI, including simultaneous icEEG-fMRI data acquisitions, in the presence of implanted intra-cranial EEG electrodes, by presenting some histopathological and heat-shock immunopositive labelling observations in surgical tissue samples from patients who underwent the scanning procedure. METHODS: We performed histopathology and heat shock protein expression analyses on surgical tissue samples from nine patients who had been implanted with icEEG electrodes. Three patients underwent icEEG-fMRI and structural MRI (sMRI); three underwent sMRI only, all at similar time points after icEEG implantation; and three who did not undergo functional or sMRI with icEEG electrodes. RESULTS: The histopathological findings from the three patients who underwent icEEG-fMRI were similar to those who did not, in that they showed no evidence of additional damage in the vicinity of the electrodes, compared to cases who had no MRI with implanted icEEG electrodes. This finding was similar to our observations in patients who only underwent sMRI with implanted icEEG electrodes. CONCLUSION: This work provides unique evidence on the safety of functional MRI in the presence of implanted EEG electrodes. In the cases studied, icEEG-fMRI performed in accordance with our protocol based on low-SAR (≤0.1 W/kg) sequences at 1.5T using a head-transmit RF coil, did not result in measurable additional damage to the brain tissue in the vicinity of implanted electrodes. Furthermore, while one cannot generalize the results of this study beyond the specific electrode implantation and scanning conditions described herein, we submit that our approach is a useful framework for the post-hoc safety assessment of MR scanning with brain implants
    • …
    corecore