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The elusive nature of sudden unexpected death in epilepsy (SUDEP) has led to

investigations of mechanisms and identification of biomarkers of this fatal scenario

that constitutes the leading cause of premature death in epilepsy. In this short review,

we compile evidence from structural and functional neuroimaging that demonstrates

alterations to brain structures and networks involved in central autonomic and respiratory

control in SUDEP and those at elevated risk. These findings suggest that compromised

central control of vital regulatory processes may contribute to SUDEP. Both structural

changes and dysfunctional interactions indicate potential mechanisms underlying the

fatal event; contributions to individual risk prediction will require further study. The

nature and sites of functional disruptions suggest potential non-invasive interventions

to overcome failing processes.

Keywords: biomarkers, SUDEP, MRI, functional connectivity, structural imaging biomarkers

INTRODUCTION

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of untimely death in epilepsy
(1), with a 20-fold increase in incidence over that of sudden death in the general population (2, 3).
SUDEP is largely sleep-bound (around 60% of events) and occurs unwitnessed in nearly 90% of
cases (4). With no structural, or toxicological indicators of the cause of death, precise underlying
SUDEP mechanisms remain elusive.

Observational studies within epilepsy monitoring units (EMUs) show autonomic and
respiratory dysfunction preceding SUDEP. A comprehensive assessment of the incidence and
mechanisms of cardiorespiratory arrests in EMUs (5) revealed severe alterations to cardiac
and respiratory function in the post-ictal period of generalized tonic-clonic seizures (GTCS)
which led to SUDEP (n = 10 cases). Specifically, transient cessations in breathing preceded
terminal apnoea, and ultimately terminal asystole. Prolonged peri-ictal apnea (6), with or without
bradycardia and asystole, and post-convulsive central apnea (7) may play a role in SUDEP risk.
Cortical and sub-cortical structures that modulate autonomic and breathing processes are of
great interest to pre-mortem risk identification through imaging (8), particularly since electrical
stimulation studies confirm the role of brain regions often involved in epileptic seizures (9).
Sustained post-ictal hypotension is also associated with GTCS (10), further indicating alterations to
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central autonomic control processes following GTCS. Overall,
this key evidence demonstrates centrally-mediated disruption to
autonomic and breathing regulatory processes following GTCS
(5, 10) and cases of observed SUDEP (5).

GTCS are the leading SUDEP risk-factor (11); experiencing
three or more seizures of this type per year is associated with
the largest increase in risk (12). The possibility that seizures,
especially GTCS, propagate to, and rapidly involve, central
autonomic and respiratory brain sites, leading to dysfunction, has
been previously hypothesized (13, 14); yet, this central issue to
SUDEP remains unresolved.

Neuroimaging is a powerful tool to explore structural and
functional brain alterations within distinct sites and networks
crucial for autonomic and respiratory regulatory processes
in patients who (after being scanned) succumb to SUDEP.
Such assessments allow the investigation of structural (tissue)
abnormalities or disrupted networks related to SUDEP, and
have the potential to shed light on underlying mechanisms
and provide biomarkers to prospectively identify living patients
at heightened risk. In the following sections, evidence from
structural and functional magnetic resonance imaging (MRI)
investigations into SUDEP will be discussed, together with
potential interventions to overcome deficient processes.

EVIDENCE FROM STRUCTURAL MRI

Structural MRI enables the identification and characterization
of brain tissue abnormalities, regional alterations in brain
volume, cortical thickness and morphometry, and abnormal
structural connections (fiber tracts). Such techniques have been
widely applied to epilepsy (15–17), and have the potential to
improve understanding of underlying brain physiology and
highlight quantifiable disease biomarkers (18, 19). Although the
precise pathological mechanisms of SUDEP are not known,
some imaging studies have highlighted structural changes to
cortical, sub-cortical, and brainstem structures in those who
subsequently succumbed to SUDEP and those at greatest risk,
indicating morphological disturbances among sites involved in
central autonomic and respiratory regulation. In the remainder
of this section we provide an overview of the main relevant
imaging findings, and interpret them in relation to other,
independent work.

Tissue Loss in Thalamic, Brainstem, and
Frontal Sites
Voxel-based morphometry (VBM) has been used to investigate
regional gray matter changes in subjects who later died from
SUDEP (n= 12) and comparable high-risk, low-risk, and healthy
controls (20). Gray matter volume of the bilateral posterior
thalamus (pulvinar nuclei) was found to be reduced in SUDEP
cases and those at high-risk, compared with healthy, and low-risk
controls. Although correction for multiple comparisons was
not employed in this study, more recent work (21) confirmed
posterior thalamic loss (though confined to the left only) in a
larger cohort (n = 25 SUDEP cases) which employed family-
wise-error rate (FWER) correction of p-values. Thalamic volume

loss in patients who experience GTCS, and therefore who are
at greatest risk of SUDEP, has been widely demonstrated (22–
24), including loss specifically within the pulvinar (22). We note
that in congenital central hypoventilation syndrome, a condition
involving breathing and cardiovascular dysfunction, blood flow
responses to hypoxia and hypercapnia were found to be altered
in the posterior thalamus (25, 26), further supporting its role
in mediating control of breathing (27, 28). In other conditions
involving impaired autonomic and respiratory function, such as
obstructive sleep apnoea (29) and heart failure (30), posterior
thalamic volume loss also appears. Posterior thalamic loss raises
the possibility that strategic control of low oxygen and CO2 is at
risk, a serious handicap during ictal events where recovery from
low oxygen and high CO2 necessitates appropriate responses to
such ventilatory conditions.

A recent investigation into neocortical morphometry in
patients with GTCS (n= 53) revealed widespread thinning, most
prominently within the frontal lobe, including orbitofrontal sites,
which are involved in cardiovascular regulation (31), and in
temporal and parietal cortices (32). The results of volumetric
studies are consistent with these findings, revealing tissue loss
within the frontal cortex (23), including medial and lateral
orbitofrontal regions (22) in patients with GTCS. Those cortical
changes should be viewed in the context of volume changes in
thalamic sites, since sensory information classically synapses in
the thalamus before projecting to cortical sites, with reticular
thalamic sites providing an aspect of focus to afferent input.Many
of these projections are reciprocal, providing a basis to induce
structural alterations in subcortical areas following changes in
cortical thickness.

In addition to changes among cortical and sub-cortical
structures, more-caudal brain alterations have also been
identified in cases of SUDEP. VBM revealed reduced volume
of the periaqueductal gray [PAG; (21, 33)]. Volume loss also
appears in the medulla oblongata, which becomes progressively
more extensive the closer to SUDEP from MRI (34). Portions of
the medulla form the final common pathway for cardiovascular
and respiratory control. The PAG plays a significant role in
cardiorespiratory patterning and recovery; deficient post-ictal
PAG-driven compensatory mechanisms have been linked
to SUDEP in a mouse model (35). That role stems from
projections from forebrain areas, including the amygdala, and
its own projections to parabrachial and ventrolateral regions
for breathing control (36); concerns of PAG contributions to
breathing partially stem from susceptibility of its neurons to
opiates (37), with their well-known depression of breathing. PAG
neurons show time-locked relationships to both the respiratory
(38), and cardiac (39) cycles, as revealed by animal studies, and
these relationships are sleep-state dependent. In this context, the
fact that SUDEP appears preferentially during sleep emphasizes
the need to study any functional connectivity changes with the
PAG in the context of state change.

Overall, there is accumulating evidence of widespread
structural loss, particularly within anatomic regions related
to cardiorespiratory functions such as thalamic, frontal lobe
(including medial and orbital divisions) as well as brainstem sites
in people who suffered SUDEP and in those at greatest risk.
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Tissue Gain in Limbic, Insula, and Sensory
Sites
In addition to regional reductions, regional increased volume,
and cortical thickness in key autonomic, breathing, and sensory
sites have been observed in SUDEP cases and those at high
risk. Compared with low-risk and healthy subjects, cases of
SUDEP and those at high risk show increased graymatter volume
of the right amygdala and anterior hippocampus (20), which
are known to be involved in breathing regulation (40). More
recent imaging work demonstrates enlargements to additional
anterior limbic structures, including the bilateral amygdala,
parahippocampal gyrus and entorhinal cortex (21) in SUDEP
cases and high-risk subjects. The subcallosal cortex, a region
involved in blood pressure regulation (8), is also enlarged—but
only in those who subsequently died (21). Bilateral increased
mesial temporal structure volumes, including the amygdala,
appear in a sub-type of mesial temporal lobe epilepsy (m-
TLE) who also had poor post-surgical outcome (41). We note
that patients in whom surgery has failed to reduce seizure
frequency encompass the group at greatest risk of SUDEP
risk, when compared with population-based incidence cohorts,
prevalence cohorts, populations from epilepsy clinics, and even
refractory epilepsy cohorts (1). Increased volume may reflect
gliosis or inflammation, potentially resulting from ongoing
hypoxic damage (42) occurring following seizures (43), although
this must be confirmed in human epilepsy studies. Uncontrolled
GTCS, often seen in subjects who die and those at high-
risk, could accelerate such processes, although further work is
required to confirm this process.

Patients who experience GTCS also show cortical thickening
across a number of sites (32): The post-central gyri, anterior
insulae and the subgenual, anterior, posterior, and isthmus
cingulate exhibited cortical thickening in GTCS patients (n =

53) compared with healthy controls (n = 530). While patients
who experience GTCS are at highest risk of SUDEP, assessments
of cortical thickness are needed in patients who died from
SUDEP, since studies including only at-risk populations are
complicated by limited interpretability. Elevated volume and
cortical thickness are traditionally considered as being linked
to improved function or compensatory mechanisms, such as
the increased volume within visual cortex observed in deaf vs.
hearing individuals (44), and elevated peripheral V1 volume
in those with macular degeneration (45). In the context of
seizures, however, the explanation for increased volume and
thickening is poorly developed, and further investigation is
required. For SUDEP, elevated volumes in selected areas, e.g., the
amygdala and subcallosal regions, raise concerns; if the increased
volumes indeed reflect enhanced function, then the potential
for those structures to induce apnea (amygdala) or hypotension
(subcallosal region) may place the patient at risk.

Summary of Structural Imaging Findings
Evidence from morphometry and cortical thickness studies
in SUDEP and at-risk groups (i.e., patients with GTCS)
demonstrates reduced volume and cortical thinning in thalamic
(primarily within posterior portions), frontal (medial and orbital

cortex), and midbrain/cerebellar/brainstem sites (Figure 1).
Increased volume and regional cortical thickness appear in
limbic regions, primarily anterior mesial temporal, especially
the amygdala, and cingulate structures, the insula, and sensory
areas (Figure 1). Overall, the highlighted volumetric alterations
indicate structural injury to key autonomic and respiratory
control pathways, including cortical, sub-cortical, and caudal
structures; therefore, a possible interpretation is that these
abnormalities reflect a mechanism that increases the risk
for dysfunction, particularly in circumstances under which
autonomic and respiratory processes are challenged, such
as during and after GTCS (5). However, a causal link
between volume changes and autonomic and respiratory
dysfunction is yet to be established in the SUDEP literature and
further work is required to elucidate the relationship between
volumetric changes and the extent of autonomic and respiratory
dysfunction. Further studies which utilize segmentations of
regional structures to validate differences in volume are required
to overcome the constraints of the typically limited sample size of
SUDEP studies.

EVIDENCE FROM RESTING-STATE FMRI

Resting-state (RS) fMRI is a brain imaging technique in which
subjects undergo fMRI scanning while lying “at rest” in the sense
that they are not subjected to any experimental stimulus or task;
they are usually asked to lie quietly and stay awake, with their
eyes closed. Although it has been argued that the “rest state”
in question lacks specificity, this technique has the advantage
of being applicable to a wide range of subjects, such as those
incapable of performing a specific task [such as in comatose
individuals, i.e., (46)] and thus has become an important tool
in the study of the patterns of functional connectivity [FC;
(47)]. FC describes the connectivity between spatially distant
neurophysiological events which share functional properties (48,
49). FC is based on the temporal correlations of spontaneous
(i.e., resting state) BOLD (blood oxygen level dependent) fMRI
signal fluctuations between regions. From thesemeasures, resting
brain functional connectivity can be explored in multiple ways,
the extent of which will not be covered in this short article [for a
comprehensive review, see (50)]. In the following we review the
main findings of this type of study in relation to SUDEP.

Altered Connectivity Between Central
Autonomic and Respiratory Sites
To date, two studies using RS-fMRI have focused on the FC
between brain regions related to central mediation of autonomic
and respiratory processes in patients with epilepsy (a summary
of results is illustrated in Figure 2). Tang et al. (51) compared
FC between 13 brain structures (medulla, midbrain, pons, and
bilateral amygdala, hypothalamus, thalamus, insula, and anterior
cingulate) in relation to SUDEP risk in n = 25 patients.
High-risk patients exhibited reduced FC between the pons
and right thalamus, midbrain and right thalamus, bilateral
anterior cingulate and right thalamus, and between the left
and right thalamus. In another study Allen et al. (52) in n =
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FIGURE 1 | Summary of structural findings from imaging studies in SUDEP and populations at high-risk of SUDEP. (A) Shows cortical thickness changes in patients

with GTCS (32). (B,C) Show sub-cortical gray matter alterations in SUDEP [(20), B and (21), C]. (D,E) Depict brainstem and cerebellar volume loss related to SUDEP

[(33), D and (21), E].

32 patients with TLE demonstrated reduced FC between the
brainstem and thalamus, and thalamus and anterior cingulate,
as well as reductions between the right anterior cingulate and
bilateral putamen in high-risk subjects, relative to low-risk
subjects. In addition, elevated FC was shown, primarily involving
connections between the bilateral medial/orbital frontal cortices
and bilateral mesial temporal structures (hippocampus and
amygdala), as well as between bilateral medial/orbital frontal
cortices and bilateral insula cortex.

Both of the above-discussed studies investigated patients at
high and low risk for SUDEP, but no resting-state fMRI studies
to date have included cases of actual SUDEP. Thus, a major
limitation of both studies, is that the imaging correlates of

risk factors associated with SUDEP are in fact reported, not
necessarily the correlates of SUDEP itself. This issue remains a
critical and inherent concern of all imaging studies into SUDEP,
since cases of SUDEP are scarce, leading studies to rely on risk
stratification of living subject datasets.

Despite their pitfalls, both experiments demonstrate altered
networking among autonomic and breathing-related brain
areas in those at high-risk for SUDEP. Larger studies, and
investigations involving cases of SUDEP, may offer confirmation
of disturbed connectivity and insights into the pathogenesis of
SUDEP, which is still largely undefined. Overall, RS-fMRI has
provided insights into connectivity changes in patients at high-
risk of SUDEP which indicate altered communication among
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FIGURE 2 | Summary of rs-FC findings in patients at risk of SUDEP. Altered connectivity between cortical and sub-cortical autonomic- and breathing-related sites.

(A,B) Show reduced functional connectivity in patients at high risk [Adapted from (51), A and (52), B], while (C) Shows increased connectivity between primarily frontal

and limbic sites in those at high-risk [Adapted from (52)].

key brain regions contributing to autonomic and breathing
regulatory processes. However, given the currently small body
of literature, further work is required involving larger cohorts,
healthy subjects, and victims of SUDEP to confirm initial work
and characterize FC changes linked to SUDEP and other relevant
clinical factors.

RELATIONSHIP BETWEEN STRUCTURAL
CHANGES AND FUNCTIONAL
CONNECTIVITY DISRUPTIONS

Some of the observed brain volume changes in SUDEP, and
those at high risk for SUDEP, align with changes highlighted
in the functional connectivity studies. For example, reduced
volume within the thalamus observed in SUDEP and high-risk
patients (20), as well as those with GTCS (22–24), appears to
relate to the reduced connectivity of the thalamus (51, 52).
Additionally, elevated volume and cortical thickening found in
limbic structures such as the amygdala (20), bear resemblance
to the increased FC of the bilateral mesial temporal structures in
TLE patients at high risk (52).

Despite some homologous findings across structural and FC
studies, further work is required for example to elucidate the link
between volumetric changes and connectivity disruptions. In this
respect, future studies should focus on combined volumetric and
connectivity-based experiments [i.e., (22)] on the same cohorts
of individuals and in larger datasets involving a diverse range of
epilepsy sub-types.

FURTHER CONSIDERATIONS AND
FUTURE DIRECTIONS

Relationships Between Regional Brain
Volume and Clinical Epilepsy Variables
The volume of some brain structures has been found to
correlate with clinical epilepsy-related variables, particularly in
the thalamus. Disease duration, for example, correlates negatively
with thalamic volume, as has been demonstrated extensively
(22, 53–56), including gray matter within the pulvinar nuclei
(20)—volume loss here is also associated with greater seizure
frequency (57). Additionally, GTCS frequency correlates with
cortical thickness of the cingulate and insula (32). However,
both disease duration and seizure frequency are also major
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SUDEP risk factors (58); thus, a central objective for the field
lies within disentangling the effects of the former from what
is believed to be sequalae of the fatal event—representing a
major challenge, since it is likely that they both contribute to
the underlying mechanisms of SUDEP. This issue brings to light
an overarching concern for all studies into SUDEP, namely the
problem of defining imaging correlates of such under defined
pathology. Modeling and controlling for clinical factors (e.g.,
disease duration, medications, and seizure frequency) in relation
to regional brain volume changes are important aspects of
SUDEP research, and should be carried out when considering
brain alterations, since the observed volumetric changes may be
related to presence of GTCS or epilepsy duration. Long-term
prospective studies are needed to investigate all contributory
factors of volume loss and connectivity alterations, including
sex-specific alterations, as highlighted previously in a cortical
thickness study of patients with GTCS (32).

Future Studies
Given the relative rarity of SUDEP, multi-center collaborations,
including such consortia as the Center for SUDEP Research (a
center without walls initiative, funded by the National Institute
of Neurological Disorders and Stroke), which bring together
investigators from institutions across the US and UK and utilize
open data sharing, will be crucial. Also, the integration of multi-
modal imaging data, acquired prospectively seems essential
for improved characterization of the relationship between
structural and functional brain alterations: diffusion MRI, RS-
fMRI, and T1- and T2-weighted MR images to investigate
how volume changes and structural and functional connectivity
alterations among regulatory structures arise and change in
relation to clinical manifestations such as seizure frequency and
disease duration. Additionally, the availability of ever larger
retrospective datasets (including genetic data) for the wider
research community would benefit efforts to better characterize
SUDEP (including potential sub-types) and establish biomarkers
using data-driven approaches.

Volumetric and morphological structural changes within
the brainstem are a crucial aspect of research into SUDEP
mechanisms, since the region contains many of the final
common autonomic and respiratory pathways. Some anatomical
properties of the brainstem and MR resolution limitations have
restricted imaging studies to volumetric evaluation, either by
gray and white matter segmentation, or amount of warping
required to match a common template. Both techniques, which
rely on T1-weighted contrast, may be insufficiently sensitive
to detect underlying tissue changes within critical structures,
particularly since many are small nuclei which lie on the border
of white and gray matter. However, other newer procedures,
such as quantitative MR T1/T2 ratio scans will enable assessment
of myelin integrity, providing insights into allowing necessary
evaluation of supportive tissue for neuronal processes in the
brainstem and elsewhere.

Combined Resting-State and Autonomic
fMRI Studies
The observed disruptions of resting-state patterns in SUDEP
patients mandate the assessment of failed vital functions,

namely studies which incorporate concurrent recordings of
autonomic and breathing patterns during fMRI scanning,
enabling characterization of associations between resting
FC and resting cardiovascular and breathing processes. In
addition, conventional correlations of “evoked” fMRI changes
to breathing and cardiovascular changes to triggered challenges,
e.g., CO2 or hypoxia provocations, Valsalva maneuvers,
cold pressor, or hand grip challenges may be useful to show
magnitude of responses, timing delays or advancements
between linked respiratory and cardiovascular areas. In other
pathologic conditions, such as heart failure or congenital
central hypoventilation syndrome, both distortions in timing
and amplitude of linked structures appear (59, 60). Such
“triggered” fMRI signal/physiological change correlations have
the potential to show how dependencies between any given
cortical or subcortical areas influence other areas; how time-
delayed interactions can contribute to inappropriate timing
of upper airway activation relative to diaphragmatic descent,
leading to airway obstruction, or result in inappropriate or
untimely compensatory blood pressure changes to challenges.
Both scenarios can lead to physiologically-compromised
circumstances, but the risk can be revealed by triggered
fMRI studies.

Relevance to the Identification of
Preventative Interventions
The observed alterations in FC between brain structures which
have the potential to elicit a cardiovascular or breathing
crisis leading to SUDEP raise the issue of how 1 day we
might be able to intervene in those dysfunctional pathways
to avoid or overcome such crises. Potential targets for
intervention are the neurotransmitters in the affected pathways
or the enhancement of pathways for protective recovery
circuitry. In addition, advances in neuromodulation procedures
offer a means to intervene directly in disrupted functional
pathways, which is of particular use here, since 31% of
epilepsy patients are drug resistant (61). Neuromodulatory
techniques, such as invasive stimulation of the vagus, has
been effective for the decrease of seizure incidence [for a
review, see (62)]; Furthermore non-invasive vagal stimulation
can both reduce seizure incidence, and modify breathing and
cardiovascular patterns (63–68). Therefore, the combination
of identifying disrupted cardiovascular/respiratory functional
pathways, and implementation of inputs from cranial nerves
that will influence those pathways through non-invasive or
invasive neuromodulatory techniques have the potential impact
disrupted vital functions that lead to the fatal scenario
in SUDEP.

SUMMARY AND CONCLUSIONS

People who succumb to SUDEP, and those at risk, undergo
regional brain structural changes and resting-state fMRI
alterations between essential areas regulating cardiovascular
and breathing control, indicating a structural and functional
basis for impaired communication between areas necessary
for recovery from compromised vital circumstances. The
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findings, although limited in sample sizes, are sufficiently
apparent that indications of structural and functional changes
may signal risk for SUDEP and shed light on underlying
mechanisms. Moreover, both the structural and functional
outcomes suggest means for potential interventions with
specialized pharmacologic or neuromodulatory procedures. The
proper characterization of the respective roles of the known risk
factors, such as GTCS and disease duration, in relation to imaging
findings can contribute to understanding SUDEP mechanisms,
and warrant further investigation to disentangle clinical factors
from what may be related to SUDEP.
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