22 research outputs found
From PK/PD to QSP: Understanding the Dynamic Effect of Cholesterol-Lowering Drugs on Atherosclerosis Progression and Stratified Medicine
Current computational and mathematical tools are demonstrating the high value of using systems modeling approaches (e.g. Quantitative Systems Pharmacology) to understand the effect of a given compound on the biological and physiological mechanisms related to a specific disease. This review provides a short survey of the evolution of the mathematical approaches used to understand the effect of particular cholesterol-lowering drugs, from pharmaco-kinetic (PK) / pharmaco-dynamic (PD) models, through physiologically base pharmacokinetic models (PBPK) to QSP. These mathematical models introduce more mechanistic information related to the effect of these drugs on atherosclerosis progression and demonstrate how QSP could open new ways for stratified medicine in this field
Computer assisted Doppler waveform analysis and ultrasound derived turbulence intensity ratios can predict early hyperplasia development in newly created vascular access fistula: Pilot study, methodology and analysis.
OBJECTIVES:
Following surgical creation of arterio-venous fistulae (AVF), the desired outward remodeling is often accompanied by the development of neointimal hyperplasia (NIH), which can stymie maturation and may lead to thrombosis and access failure. The aim of this study was to investigate the feasibility of using a non-invasive test, to detect and quantify the turbulent flow patterns believed to be associated with NIH development.
DESIGN: This was a prospective, observational study. Ultrasound derived turbulence intensity ratios (USTIR) were calculated from spectral Doppler waveforms, recorded from newly formed AVF, and were compared with haemodynamic and structural changes observed during the initial maturation period.
SETTING: Measurements were obtained by accredited Clinical Vascular Scientists, at the Royal Free Hospital, London.
PARTICIPANTS: Patients with newly created AVF were invited to participate in the study. A total of 30 patients were initially recruited with 19 participants completing the 10 week study protocol.
OUTCOME MEASURES:
The primary outcome measure was the development of NIH resulting in a haemodynamically significant lesion.
The secondary outcome was successful maturation of the AVF at 10 weeks.
RESULTS: Elevated USTIR in the efferent vein 2 weeks post surgery corresponded to the development of NIH formation (P = 0.02). A cut off of 6.39% predicted NIH development with a sensitivity of 87.5% and a specificity of 80%.
CONCLUSION:
Analysis of Doppler waveforms can successfully identify deleterious flow patterns and predict inward luminal remodelling in maturing AVF. We propose a longitudinal follow up study to assess the viability of this technique as a surveillance tool
Editorial: Mathematics for Healthcare as Part of Computational Medicine
This is the final version. Available on open access from Frontiers Media via the DOI in this recordEngineering and Physical Sciences Research Council (EPSRC
Aortic dissection simulation models for clinical support: fluid-structure interaction vs. rigid wall models
BACKGROUND: The management and prognosis of aortic dissection (AD) is often challenging and the use of personalised computational models is being explored as a tool to improve clinical outcome. Including vessel wall motion in such simulations can provide more realistic and potentially accurate results, but requires significant additional computational resources, as well as expertise. With clinical translation as the final aim, trade-offs between complexity, speed and accuracy are inevitable. The present study explores whether modelling wall motion is worth the additional expense in the case of AD, by carrying out fluid-structure interaction (FSI) simulations based on a sample patient case. METHODS: Patient-specific anatomical details were extracted from computed tomography images to provide the fluid domain, from which the vessel wall was extrapolated. Two-way fluid-structure interaction simulations were performed, with coupled Windkessel boundary conditions and hyperelastic wall properties. The blood was modelled using the Carreau-Yasuda viscosity model and turbulence was accounted for via a shear stress transport model. A simulation without wall motion (rigid wall) was carried out for comparison purposes. RESULTS: The displacement of the vessel wall was comparable to reports from imaging studies in terms of intimal flap motion and contraction of the true lumen. Analysis of the haemodynamics around the proximal and distal false lumen in the FSI model showed complex flow structures caused by the expansion and contraction of the vessel wall. These flow patterns led to significantly different predictions of wall shear stress, particularly its oscillatory component, which were not captured by the rigid wall model. CONCLUSIONS: Through comparison with imaging data, the results of the present study indicate that the fluid-structure interaction methodology employed herein is appropriate for simulations of aortic dissection. Regions of high wall shear stress were not significantly altered by the wall motion, however, certain collocated regions of low and oscillatory wall shear stress which may be critical for disease progression were only identified in the FSI simulation. We conclude that, if patient-tailored simulations of aortic dissection are to be used as an interventional planning tool, then the additional complexity, expertise and computational expense required to model wall motion is indeed justified
Virtual TEVAR: Overcoming the Roadblocks of In-Silico Tools for Aortic Dissection Treatment
The use of in silico tools for the interventional planning of complex vascular conditions, such as Aortic
Dissections has been often limited by high computational cost, involving long timescales for accurate results to
be produced and low numbers of patients, precluding the use of statistical analyses to inform individual-level
models. In the paper [Theranostics 2018; 8(20):5758-5771. doi:10.7150/thno.28944], Chen et al. proposed a novel algorithm to compute patient-specific ‘virtual TEVAR’ that will help clinicians to approach individual treatment and decision-making based on objective and quantifiable metrics and validated on a cohort of 66
patients in real time. This research will significantly impact the field and has the potential to transform the way clinical interventions will be approached in the futur
Low Cost Fabrication of PVA Based Personalized Vascular Phantoms for in Vitro Haemodynamic Studies: Three Applications
Vascular phantoms mimicking human vessels are commonly used to perform in vitro haemodynamic studies for a number of bioengineering applications, such as medical device testing, clinical simulators and medical imaging research. Simplified geometries are useful to perform parametric studies, but accurate representations of the complexity of the in vivo system are essential in several applications as personalised features have been found to play a crucial role in the management and treatment of many vascular pathologies. Despite numerous studies employing vascular phantoms produced through different manufacturing techniques, an economically viable technique, able to generate large complex patient-specific vascular anatomies, still needs to be identified. In this work, a manufacturing framework to create personalised and complex phantoms with easily accessible and affordable materials is presented. In particular, 3D printing with polyvinyl alcohol (PVA) is employed to create the mould, and lost core casting is performed to create the physical model. The applicability and flexibility of the proposed fabrication protocol is demonstrated through three phantom case studies - an idealised aortic arch, a patient-specific aortic arch, and a patient-specific aortic dissection model. The phantoms were successfully manufactured in a rigid silicone, a compliant silicone and a rigid epoxy resin, respectively; using two different 3D printers and two casting techniques, without the need of specialist equipment
Highly integrated workflows for exploring cardiovascular conditions: Exemplars of precision medicine in Alzheimer's disease and aortic dissection = Processus à haut degré d’intégration pour l’étude de troubles cardiovasculaires : exemples de médecine de précision appliquée à la maladie d’Alzheimer et à la dissection aortique
For precision medicine to be implemented through the lens of in silico technology, it is imperative that biophysical research workflows offer insight into treatments that are specific to a particular illness and to a particular subject. The boundaries of precision medicine can be extended using multiscale, biophysics-centred workflows that consider the fundamental underpinnings of the constituents of cells and tissues and their dynamic environments. Utilising numerical techniques that can capture the broad spectrum of biological flows within complex, deformable and permeable organs and tissues is of paramount importance when considering the core prerequisites of any state-of-the-art precision medicine pipeline. In this work, a succinct breakdown of two precision medicine pipelines developed within two Virtual Physiological Human (VPH) projects are given. The first workflow is targeted on the trajectory of Alzheimer's Disease, and caters for novel hypothesis testing through a multicompartmental poroelastic model which is integrated with a high throughput imaging workflow and subject-specific blood flow variability model. The second workflow gives rise to the patient specific exploration of Aortic Dissections via a multi-scale and compliant model, harnessing imaging, computational fluid-dynamics (CFD) and dynamic boundary conditions. Results relating to the first workflow include some core outputs of the multiporoelastic modelling framework, and the representation of peri-arterial swelling and peri-venous drainage solution fields. The latter solution fields were statistically analysed for a cohort of thirty-five subjects (stratified with respect to disease status, gender and activity level). The second workflow allowed for a better understanding of complex aortic dissection cases utilising both a rigid-wall model informed by minimal and clinically common datasets as well as a moving-wall model informed by rich datasets. / Pour que la médecine actuelle puisse profiter de la technologie in silico, il est impératif que les flux de recherche biophysique offrent un aperçu précis des traitements spécifiques à une maladie particulière et à un sujet particulier. Les limites de la médecine peuvent être repoussées à l’aide de flux de travail multi-échelles, centrés sur la biophysique, qui tiennent compte des constituants fondamentaux des cellules et des tissus, et de leurs environnements dynamiques. L’utilisation de techniques numériques permettant de capter le large spectre des flux biologiques au sein d’organes et de tissus complexes, déformables et perméables est d’une importance capitale lorsqu’il s’agit d’examiner les conditions essentielles de tout pipeline médical de précision de pointe. Dans ce travail, une analyse succinte de deux pipelines de médecine de précision développés dans le cadre de deux projets VPH (Virtual Physiological Human) est donnée. Le premier flux de travail se concentre sur la trajectoire de la maladie d’Alzheimer et permet de tester de nouvelles hypothèses au moyen d’un modèle poroélastique à plusieurs compartiments qui est intégré à un flux de travail d’imagerie à haut débit et à un modèle de variabilité du débit sanguin spécifique au sujet. Le deuxième flux de travail donne lieu à l’exploration spécifique des dissections aortiques chez le patient par le biais d’un modèle multi-échelle conforme, exploitant l’imagerie, la dynamique des fluides computationnelle (CFD) et les conditions limites dynamiques. Les résultats relatifs au premier flux de travail comprennent certains des principaux extrants du cadre de modélisation multiporoélastique et la représentation des zones de gonflement péri-artériel et de solution de drainage périveineux. Ces dernières zones de solutions ont été analysées statistiquement sur une cohorte de trente-cinq sujets (stratifiés en fonction de l’état pathologique, du sexe et du niveau d’activité). Le deuxième flux de travail a permis de mieux comprendre les cas complexes de dissection aortique à l’aide d’un modèle à parois rigides fondé sur des ensembles de données minimales et cliniquement communes et d’un modèle à parois mobiles reposant sur de riches données