15,188 research outputs found

    A procedure for testing the quality of LANDSAT atmospheric correction algorithms

    Get PDF
    There are two basic methods for testing the quality of an algorithm to minimize atmospheric effects on LANDSAT imagery: (1) test the results a posteriori, using ground truth or control points; (2) use a method based on image data plus estimation of additional ground and/or atmospheric parameters. A procedure based on the second method is described. In order to select the parameters, initially the image contrast is examined for a series of parameter combinations. The contrast improves for better corrections. In addition the correlation coefficient between two subimages, taken at different times, of the same scene is used for parameter's selection. The regions to be correlated should not have changed considerably in time. A few examples using this proposed procedure are presented

    Regularity at infinity of real mappings and a Morse-Sard theorem

    Full text link
    We prove a new Morse-Sard type theorem for the asymptotic critical values of semi-algebraic mappings and a new fibration theorem at infinity for C2C^2 mappings. We show the equivalence of three different types of regularity conditions which have been used in the literature in order to control the asymptotic behaviour of mappings. The central role of our picture is played by the tt-regularity and its bridge toward the ρ\rho-regularity which implies topological triviality at infinity

    Scaling limit for a drainage network model

    Full text link
    We consider the two dimensional version of a drainage network model introduced by Gangopadhyay, Roy and Sarkar, and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the convergence criteria proposed by Fontes, Isopi, Newman and Ravishankar.Comment: 15 page

    Zero-field Kondo splitting and quantum-critical transition in double quantum dots

    Full text link
    Double quantum dots offer unique possibilities for the study of many-body correlations. A system containing one Kondo dot and one effectively noninteracting dot maps onto a single-impurity Anderson model with a structured (nonconstant) density of states. Numerical renormalization-group calculations show that while band filtering through the resonant dot splits the Kondo resonance, the singlet ground state is robust. The system can also be continuously tuned to create a pseudogapped density of states and access a quantum critical point separating Kondo and non-Kondo phases.Comment: 4 pages, 4 figures; Accepted for publication in Physical Review Letter

    Exchange interaction effects in the thermodynamic properties of quantum dots

    Full text link
    We study electron-electron interaction effects in the thermodynamic properties of quantum-dot systems. We obtain the direct and exchange contributions to the specific heat C_v in the self-consistent Hartree-Fock approximation at finite temperatures. An exchange-induced phase transition is observed and the transition temperature is shown to be inversely proportional to the size of the system. The exchange contribution to C_v dominates over the direct and kinetic contributions in the intermediate regime of interaction strength (r_s ~ 1). Furthermore, the electron-electron interaction modifies both the amplitude and the period of magnetic field induced oscillations in C_v.Comment: 4 pages, 4 figures; To appear in Phys. Rev.

    Development of an electrochemical RNA-aptasensor to detect human osteopontin

    Get PDF
    Electrochemical aptasensors may be used to detect protein biomarkers related to tumor activity. Osteopontin (OPN), a protein present in several body fluids, has been suggested as a potential biomarker since its overexpression seems to be associated with breast cancer progression and metastasis. In this work, a simple and label-free voltammetric aptasensor for the detection of OPN, using an RNA aptamer previously reported to have affinity for human OPN as the molecular recognition element, and the ferro/ferricyanide solution as a redox probe, was developed. The RNA aptamer was synthetized and immobilized in a working microelectrode gold surface (diameter of 0.8 mm) of a screen-printed strip with a silver pseudo-reference electrode and a gold counter electrode. The electrochemical behavior of the electrode surface after each preparation step of the aptasensor was studied using cyclic voltammetry and square wave voltammetry. The resulting voltammetric aptasensor was used to detect OPN in standard solutions. Cyclic voltammetry results showed that the aptasensor has reasonable detection and quantification limits (3.7±0.6 nM and 11±2 nM, respectively). Indeed, the detection limit falls within the osteopontin levels reported in the literature for patients with metastatic breast cancer. Moreover, the aptasensor is able to selectively detect the target protein in the presence of other interfering proteins, except for thrombin. Considering the overall results, a possible application of the aptasensor for cancer prognosis may be foreseen in a near future.FCT and FEDER under Program PT2020 (Project UID/EQU/50020/2013); by the Strategic Project PEst-OE/EQB/LA0023/2013 and by the project ref. RECI/BBB-EBI/ 0179/2012 (project number FCOMP-01-0124-FEDER-027462) funded by FCTFundação para a Ciência e a Tecnologia(FCT) through the PhD grant SRFH/BD/65021/2009

    Axion Like Particles and the Inverse Seesaw Mechanism

    Get PDF
    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft γ\gamma-ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomaly cancellation imposes strong constraints on the order of the group. The anomalous U(1)(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.Comment: 29pp. v4: published version with erratum. Conclusions unchange
    corecore