104 research outputs found

    Superfluid helium on orbit transfer (SHOOT)

    Get PDF
    A number of space flight experiments and entire facilities require superfluid helium as a coolant. Among these are the Space Infrared Telescope Facility (SIRTF), the Large Deployable Reflector (LDR), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (PAMF or Astromag), and perhaps even a future Hubble Space Telescope (HST) instrument. Because these systems are required to have long operational lifetimes, a means to replenish the liquid helium, which is exhausted in the cooling process, is required. The most efficient method of replenishment is to refill the helium dewars on orbit with superfluid helium (liquid helium below 2.17 Kelvin). To develop and prove the technology required for this liquid helium refill, a program of ground and flight testing was begun. The flight demonstration is baselined as a two flight program. The first, described in this paper, will prove the concepts involved at both the component and system level. The second flight will demonstrate active astronaut involvement and semi-automated operation. The current target date for the first launch is early 1991

    Superfluid helium needs and resupply on Space Station

    Get PDF
    Viewgraphs and discussion on superfluid helium needs and resupply on space station are presented. Topics covered include: uses of superfluid helium in space; space station He 2 technology issues; resupply - fluid management issues; liquid acquisition devices for on orbit transfer; and liquid acquisition devices for SHOOT

    Apparatus for Measuring Total Emissivity of Small, Low-Emissivity Samples

    Get PDF
    An apparatus was developed for measuring total emissivity of small, lightweight, low-emissivity samples at low temperatures. The entire apparatus fits inside a small laboratory cryostat. Sample installation and removal are relatively quick, allowing for faster testing. The small chamber surrounding the sample is lined with black-painted aluminum honeycomb, which simplifies data analysis. This results in the sample viewing a very high-emissivity surface on all sides, an effect which would normally require a much larger chamber volume. The sample and chamber temperatures are individually controlled using off-the-shelf PID (proportional integral derivative) controllers, allowing flexibility in the test conditions. The chamber can be controlled at a higher temperature than the sample, allowing a direct absorptivity measurement. The lightweight sample is suspended by its heater and thermometer leads from an isothermal bar external to the chamber. The wires run out of the chamber through small holes in its corners, and the wires do not contact the chamber itself. During a steady-state measurement, the thermometer and bar are individually controlled at the same temperature, so there is zero heat flow through the wires. Thus, all of sample-temperature-control heater power is radiated to the chamber. Double-aluminized Kapton (DAK) emissivity was studied down to 10 K, which was about 25 K colder than any previously reported measurements. This verified a minimum in the emissivity at about 35 K and a rise as the temperature dropped to lower values

    Helium-Cooled Black Shroud for Subscale Cryogenic Testing

    Get PDF
    This shroud provides a deep-space simulating environment for testing scaled-down models of passively cooling systems for spaceflight optics and instruments. It is used inside a liquid-nitrogen- cooled vacuum chamber, and it is cooled by liquid helium to 5 K. It has an inside geometry of approximately 1.6 m diameter by 0.45 m tall. The inside surfaces of its top and sidewalls have a thermal absorptivity greater than 0.96. The bottom wall has a large central opening that is easily customized to allow a specific test item to extend through it. This enables testing of scale models of realistic passive cooling configurations that feature a very large temperature drop between the deepspace-facing cooled side and the Sun/Earth-facing warm side. This shroud has an innovative thermal closeout of the bottom wall, so that a test sample can have a hot (room temperature) side outside of the shroud, and a cold side inside the shroud. The combination of this closeout and the very black walls keeps radiated heat from the sample s warm end from entering the shroud, reflecting off the walls and heating the sample s cold end. The shroud includes 12 vertical rectangular sheet-copper side panels that are oriented in a circular pattern. Using tabs bent off from their edges, these side panels are bolted to each other and to a steel support ring on which they rest. The removable shroud top is a large copper sheet that rests on, and is bolted to, the support ring when the shroud is closed. The support ring stands on four fiberglass tube legs, which isolate it thermally from the vacuum chamber bottom. The insides of the cooper top and side panels are completely covered with 25- mm-thick aluminum honeycomb panels. This honeycomb is painted black before it is epoxied to the copper surfaces. A spiral-shaped copper tube, clamped at many different locations to the outside of the top copper plate, serves as part of the liquid helium cooling loop. Another copper tube, plumbed in a series to the top plate s tube, is clamped to the sidewall tabs where they are bolted to the support ring. Flowing liquid helium through these tubes cools the entire shroud to 5 K. The entire shroud is wrapped loosely in a layer of double-aluminized Kapton. The support ring s inner diameter is the largest possible hole through which the test item can extend into the shroud. Twelve custom-sized trapezoidal copper sheets extend inward from the support ring to within a few millimeters of the test item. Attached to the inner edge of each of these sheets is a custom-shaped strip of Kapton, which is aluminum- coated on the warm-facing (outer) side, and has thin Dacron netting attached to its cold-facing side. This Kapton rests against the test item, but the Dacron keeps it from making significant thermal contact. The result is a non-contact, radiatively reflective thermal closeout with essentially no gap through which radiation can pass. In this way, the part of the test item outside the shroud can be heated to relatively high temperatures without any radiative heat leaking to the inside

    Lynx X-Ray Microcalorimeter Cryogenic System

    Get PDF
    The Lynx x-ray microcalorimeter instrument on the Lynx X-ray Observatory requires a state-of-the-art cryogenic system to enable high-precision and high-resolution x-ray spectroscopy. The cryogenic system and components described provide the required environment using cooling technologies that are already at relatively high technology readiness levels and are progressing toward flight-compatible subsystems. These subsystems comprise a cryostat, a 4.5-K mechanical cryocooler, and an adiabatic demagnetization refrigerator that provides substantial cooling power at 50 mK

    Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze

    Get PDF
    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin

    ADR salt pill design and crystal growth process for hydrated magnetic salts

    Get PDF
    A process is provided for producing a salt pill for use in very low temperature adiabatic demagnetization refrigerators (ADRs). The method can include providing a thermal bus in a housing. The thermal bus can include an array of thermally conductive metal conductors. A hydrated salt can be grown on the array of thermally conductive metal conductors. Thermal conductance can be provided to the hydrated salt

    Improved Design and Fabrication of Hydrated-Salt Pills

    Get PDF
    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation

    Superfluid Helium On-Orbit Transfer (SHOOT) flight demonstration

    Get PDF
    The Superfluid Helium On-Orbit Transfer (SHOOT) Flight Demonstration was an attached Shuttle payload mounted on a Hitchhiker cross-bay carrier which flew on STS-57 in June of 1993. SHOOT successfully demonstrated the handling and transfer of superfluid helium between two containers, called dewars, in low gravity. SHOOT was a class C payload and for the STS-57 mission was termed a complex secondary payload. The primaries were the retrieval of the EURECA carrier and a collection of modular experiments contained in SPACEHAB. Because the liquid helium was continuously boiling off, SHOOT's activities were scheduled for the first three days of the mission, concurrent with some SPACEHAB experiments, but well before the EURECA retrieval. Control of the SHOOT experiment was highly interactive and originated primarily from the Goddard Payload Operations and Control Center (POCC). Transfer and calibration activities required continuous command windows of up to 50 minutes duration and up to 80 minutes out of each orbit. Occasionally the crew controlled the experiment using the Payload General Support Computer (PGSC) when near-real time control and monitoring was required. SHOOT also placed considerable demands on the orbiter, including a pitch rotation of 3 deg./sec for 15 minutes, and translational burns using both the aft and forward RCS jets to generate accelerations up to 7 milli-g. The basis for these and other requirements are discussed. Interacion with the crew and timing of crew activity during the mission will be detailed. The processing flow of SHOOT at KSC is described with emphasis on the tradeoffs for vertical, as opposed to horizontal, installation in the orbiter. Finally, some lessons learned are presented that are relevant to future cryogenic and Hitchhiker payloads

    Design of the PIXIE Cryogenic System

    Get PDF
    The Primordial Inflation Explorer (PIXIE) is a proposed m1ss1on to study the polarization of the remnant cosmic microwave background with the goal of finding and understanding primordial gravity waves. The instrument has been designed to capture this information across the entire sky by rejecting foreground signals and suppressing systematic error by multiple differencing methods. The instrument operates at a temperature very close to the Cosmic Microwave Background of 2.7 K, while the detectors operate at 0.1 K. The PIXIE cryogenic system provides this in low Earth orbit by making use of 3 subsystems. Lightweight, simply deployed shields provide protection against the Earth and Sun while passively cooling wiring and instrument supports at 150 K. A mechanical cryocooler precools wires and supports at 68, 17, and 4.5 K while its compressors operate at room temperature. And finally two adiabatic demagnetization refrigerators cool the instrument from 4.5 to 2.7 K and cool the detectors to 0.1 K. Staged cooling in this manner allows a thermodynamically efficient use of relatively mature technologies that can be fully demonstrated before flight.
    • …
    corecore