64 research outputs found

    Mouse Models of Follicular and Papillary Thyroid Cancer Progression

    Get PDF
    A significant number of well-differentiated thyroid cancers progress or recur, becoming resistant to current therapeutic options. Mouse models recapitulating the genetic and histological features of advanced thyroid cancer have been an invaluable tool to dissect the mechanisms involved in the progression from indolent, well differentiated tumors to aggressive, poorly differentiated carcinomas, and to identify novel therapeutic targets. In this review, we focus on the lessons learned from models of epithelial cell-derived thyroid cancer showing progression from hyperplastic lesions to locally invasive and metastatic carcinomas

    Role of Dok-1 and Dok-2 in Leukemia Suppression

    Get PDF
    Chronic myelogenous leukemia (CML) is characterized by the presence of the chimeric p210bcr/abl oncoprotein that shows elevated and constitutive protein tyrosine kinase activity relative to the normal c-abl tyrosine kinase. Although several p210bcr/abl substrates have been identified, their relevance in the pathogenesis of the disease is unclear. We have identified a family of proteins, Dok (downstream of tyrosine kinase), coexpressed in hematopoietic progenitor cells. Members of this family such as p62dok(Dok-1) and p56dok-2(Dok-2) associate with the p120 rasGTPase-activating protein (rasGAP) upon phosphorylation by p210bcr/abl as well as receptor and nonreceptor tyrosine kinases. Here, we report the generation and characterization of single and double Dok-1 or Dok-2 knockout (KO) mutants. Single KO mice displayed normal steady-state hematopoiesis. By contrast, concomitant Dok-1 and Dok-2 inactivation resulted in aberrant hemopoiesis and Ras/MAP kinase activation. Strikingly, all Dok-1/Dok-2 double KO mutants spontaneously developed transplantable CML-like myeloproliferative disease due to increased cellular proliferation and reduced apoptosis. Furthermore, Dok-1 or Dok-2 inactivation markedly accelerated leukemia and blastic crisis onset in Tec-p210bcr/abl transgenic mice known to develop, after long latency, a myeloproliferative disorder resembling human CML. These findings unravel the critical and unexpected role of Dok-1 and Dok-2 in tumor suppression and control of the hematopoietic compartment homeostasis

    Whole-exome analysis in osteosarcoma to identify a personalized therapy

    Get PDF
    Osteosarcoma is the most common pediatric primary non-hematopoietic bone tumor. Survival of these young patients is related to the response to chemotherapy and development of metastases. Despite many advances in cancer research, chemotherapy regimens for osteosarcoma are still based on non-selective cytotoxic drugs. It is essential to investigate new specific molecular therapies for osteosarcoma to increase the survival rate of these patients. We performed exomic sequence analyses of 8 diagnostic biopsies of patients with conventional high grade osteosarcoma to advance our understanding of their genetic underpinnings and to correlate the genetic alteration with the clinical and pathological features of each patient to identify a personalized therapy. We identified 18,275 somatic variations in 8,247 genes and we found three mutated genes in 7/8 (87%) samples (KIF1B, NEB and KMT2C). KMT2C showed the highest number of variations; it is an important component of a histone H3 lysine 4 methyltransferase complex and it is one of the histone modifiers previously implicated in carcinogenesis, never studied in osteosarcoma. Moreover, we found a group of 15 genes that showed variations only in patients that did not respond to therapy and developed metastasis and some of these genes are involved in carcinogenesis and tumor progression in other tumors. These data could offer the opportunity to get a key molecular target to identify possible new strategies for early diagnosis and new therapeutic approaches for osteosarcoma and to provide a tailored treatment for each patient based on their genetic profile

    MCM5 as a target of BET inhibitors in thyroid cancer cells

    Get PDF
    Anaplastic thyroid carcinoma (ATC) is an extremely aggressive thyroid cancer subtype, refractory to the current medical treatment. Among various epigenetic anticancer drugs, bromodomain and extra-terminal inhibitors (BETis) are considered to be an appealing novel class of compounds. BETi target the bromodomain and extra-terminal of BET proteins that act as regulators of gene transcription, interacting with histone acetyl groups. The goal of this study is to delineate which pathway underlies the biological effects derived from BET inhibition, in order to find new potential therapeutic targets in ATC. We investigated the effects of BET inhibition on two human anaplastic thyroid cancer-derived cell lines (FRO and SW1736). The treatment with two BETis, JQ1 and I-BET762, decreased cell viability, reduced cell cycle S-phase, and determined cell death. In order to find BETi effectors, FRO and SW1736 were subjected to a global transcriptome analysis after JQ1 treatment. A significant portion of deregulated genes belongs to cell cycle regulators. Among them, MCM5 was decreased at both mRNA and protein levels in both tested cell lines. Chromatin immunoprecipitation (ChIP) experiments indicate that MCM5 is directly bound by the BET protein BRD4. MCM5 silencing reduced cell proliferation, thus underlining its involvement in the block of proliferation induced by BETis. Furthermore, MCM5 immunohistochemical evaluation in human thyroid tumor tissues demonstrated its overexpression in several papillary thyroid carcinomas and in all ATCs. MCM5 was also overexpressed in a murine model of ATC, and JQ1 treatment reduced Mcm5 mRNA expression in two murine ATC cell lines. Thus, MCM5 could represent a new target in the therapeutic approach against ATC

    Thyrocyte-specific inactivation of p53 and Pten results in anaplastic thyroid carcinomas faithfully recapitulating human tumors

    Get PDF
    Anaplastic thyroid carcinoma (ATC) is the most aggressive form of thyroid cancer, and often derives from pre-existing well-differentiated tumors. Despite a relatively low prevalence, it accounts for a disproportionate number of thyroid cancer-related deaths, due to its resistance to any therapeutic approach. Here we describe the first mouse model of ATC, obtained by combining in the mouse thyroid follicular cells two molecular hallmarks of human ATC: activation of PI3K (via Pten deletion) and inactivation of p53. By 9 months of age, over 75% of the compound mutant mice develop aggressive, undifferentiated thyroid tumors that evolve from pre-existing follicular hyperplasia and carcinoma. These tumors display all the features of their human counterpart, including pleomorphism, epithelial-mesenchymal transition, aneuploidy, local invasion, and distant metastases. Expression profiling of the murine ATCs reveals a significant overlap with genes found deregulated in human ATC, including genes involved in mitosis control. Furthermore, similar to the human tumors, [Pten, p53]thyr−/− tumors and cells are highly glycolytic and remarkably sensitive to glycolysis inhibitors, which synergize with standard chemotherapy. Taken together, our results show that combined PI3K activation and p53 loss faithfully reproduce the development of thyroid anaplastic carcinomas, and provide a compelling rationale for targeting glycolysis to increase chemotherapy response in ATC patients

    Penile metastasis from primary cholangiocarcinoma: the first case report

    Get PDF
    BACKGROUND: Metastatic penile carcinoma derived from cholangiocarcinoma (CCA) has not been previously reported in the literature. Common metastatic sites for CCA include the regional lymph nodes and adjacent organs. CCAs are not highly vascularised tumours, making hematogenous metastases uncommon. Hematogenous CCA metastases commonly occur at distant organs such as the lungs, adrenal glands, and bones. Median survival for patients with metastatic disease is generally less than 1 year. CASE PRESENTATION: A 74-year-old Caucasian man consulted us after having undergone penile ultrasonography for pain and increased thickness at the base of the penis after self-examination. The patient presented with a history of hepatitis C-related cirrhosis and intrahepatic CCA, diagnosed 3 years previously. A biopsy of the corpora cavernosa on both sides revealed a carcinoma harbouring the same histological and immunophenotypical features as the primary hepatic lesion. CONCLUSIONS: To date, there is no case of penile or urogenital system metastasis from CCA described in the literature. Therefore, this article represents the first case report of penile metastasis from CCA

    Honey Bee PTEN – Description, Developmental Knockdown, and Tissue-Specific Expression of Splice-Variants Correlated with Alternative Social Phenotypes

    Get PDF
    Phosphatase and TENsin (PTEN) homolog is a negative regulator that takes part in IIS (insulin/insulin-like signaling) and Egfr (epidermal growth factor receptor) activation in Drosophila melanogaster. IIS and Egfr signaling events are also involved in the developmental process of queen and worker differentiation in honey bees (Apis mellifera). Here, we characterized the bee PTEN gene homologue for the first time and begin to explore its potential function during bee development and adult life.Honey bee PTEN is alternatively spliced, resulting in three splice variants. Next, we show that the expression of PTEN can be down-regulated by RNA interference (RNAi) in the larval stage, when female caste fate is determined. Relative to controls, we observed that RNAi efficacy is dependent on the amount of PTEN dsRNA that is delivered to larvae. For larvae fed queen or worker diets containing a high amount of PTEN dsRNA, PTEN knockdown was significant at a whole-body level but lethal. A lower dosage did not result in a significant gene down-regulation. Finally, we compared same-aged adult workers with different behavior: nursing vs. foraging. We show that between nurses and foragers, PTEN isoforms were differentially expressed within brain, ovary and fat body tissues. All isoforms were expressed at higher levels in the brain and ovaries of the foragers. In fat body, isoform B was expressed at higher level in the nurse bees.Our results suggest that PTEN plays a central role during growth and development in queen- and worker-destined honey bees. In adult workers, moreover, tissue-specific patterns of PTEN isoform expression are correlated with differences in complex division of labor between same-aged individuals. Therefore, we propose that knowledge on the roles of IIS and Egfr activity in developmental and behavioral control may increase through studies of how PTEN functions can impact bee social phenotypes
    corecore