81 research outputs found

    Prenatal phenotyping: A community effort to enhance the Human Phenotype Ontology

    Get PDF
    Human phenotype ontology; Prenatal diagnosis; Prenatal phenotypingOntología del fenotipo humano; Diagnóstico prenatal; Fenotipado prenatalOntologia del fenotip humà; Diagnòstic prenatal; Fenotipat prenatalTechnological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research. The Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational research in human genetics. To better support prenatal usage, the HPO consortium conducted a series of workshops with a group of domain experts in a variety of medical specialties, diagnostic techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for precision genetic diagnostics of rare diseases to support prenatal care.European Commission; National Human Genome Research Institute; NIH Office of the Director; The European Union's EIT-Health Innovation Program bp2020-2022, Grant/Award Numbers: #211015, #20062; NIH Office of the Director (OD), the European Union's Horizon 2020 research and innovation program, Grant/Award Number: 779257; NHGRI, Grant/Award Numbers: 2R24OD011883-05A1, 1U24HG011449-01A

    Prenatal Diagnosis of Bilateral Ectrodactyly and Radial Agenesis Associated with Trisomy 10 Mosaicism

    Get PDF
    Ectrodactyly or split hand and foot malformations (SHFMs) are rare malformations of the limbs, characterized by median cles of the hands and feet, syndactyly, and aplasia and/or hypoplasia of the phalanges. ey represent a clinically and genetically heterogeneous disorder, with both sporadic and familial cases. Most of the genomic rearrangements identi�ed to date in some forms of SHFM are autosomal dominant traits, involving various chromosome regions. Bilateral radial ray defects comprise also a large heterogenous group of disorders, including trisomy 18, Fanconi anemia, and thrombocytopenia-absent-radius syndrome, not commonly associated with ectrodactyly. e present paper describes a case of ectrodactyly associated with bilateral radial ray defects, diagnosed in the �rst trimester of pregnancy, in a fetus affected by trisomy 10. Only four cases of sporadic and isolated ectrodactyly, diagnosed by ultrasonography between 14 and 22 weeks' gestation, have been reported. To our knowledge, the present case is the �rst report of mosaic trisomy 10 associated with SHFM and radial aplasia. Trisomy 10 is a rare lethal chromosomal abnormality, most frequently found in abortion products. Only six liveborn mosaic trisomy 10 infants, with severe malformations, dead in early infancy, have been reported. A severe clinical syndrome can be de�ned, comprising ear abnormalities, cle lip/palate, malformations of eyes, heart, and kidneys, and deformity of hands and feet and most oen associated with death neonatally or in early infancy

    Prenatal phenotyping: A community effort to enhance the Human Phenotype Ontology.

    Get PDF
    Technological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research. The Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational research in human genetics. To better support prenatal usage, the HPO consortium conducted a series of workshops with a group of domain experts in a variety of medical specialties, diagnostic techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for precision genetic diagnostics of rare diseases to support prenatal care

    The Human Phenotype Ontology in 2024: phenotypes around the world.

    Get PDF
    The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    A new intelligent diagnosis assistant for fetal brain and spine anomalies

    No full text
    International audienc

    Phenotyping spina bifida in the fetal surgery era

    No full text
    International audienc

    Les silhouettes de la CNEOF (2016)

    No full text
    International audienc
    corecore