34 research outputs found

    Sunitinib Inhibits Cell Proliferation and Alters Steroidogenesis by Down-Regulation of HSD3B2 in Adrenocortical Carcinoma Cells

    Get PDF
    The multi-tyrosine kinase inhibitor sunitinib is used in the treatment of several solid tumors. Animal experiments pointed to an adrenotoxic effect of sunitinib. Therefore, we evaluated the expression of key targets of sunitinib in human adrenocortical carcinoma (ACC) tumor samples and investigated its in vitro effects in ACC cell lines. We carried out immunohistochemistry for vascular endothelial growth factor (VEGF) and its receptor (VEGF-R2) in 157 ACC samples and nine normal adrenal glands. VEGF and VEGF-R2 protein were expressed in 72 and 99% of ACC samples, respectively. Using NCI-H295 and SW13 ACC cell lines, we investigated the effects of sunitinib on cell proliferation. Sunitinib reduced dose-dependently cell viability of both NCI-H295 and SW13 cells (SW13: 0.1 μM 96 ± 7%, 1 μM 90 ± 9%*, 5 μM 62 ± 6%*, controls 100 ± 9%; *p < 0.05). To determine sunitinib effects on steroidogenesis, we measured steroid hormones in cell culture supernatant by gas chromatography–mass spectrometry. We observed a pronounced decrease of cortisol secretion (1 μM 90.1 ± 1.5%*, 5 μM 57.2 ± 0.3%*, controls 100 ± 2.4%) and a concomitant increase in the DHEA/4-androstenedione and 17-hydroxypregnenolone/17-hydroxyprogesterone ratios, indicating specific inhibition of 3β-hydroxysteroid dehydrogenase (HSD3B2). In yeast microsomes transformed with HSD3B2, no direct inhibition of HSD3B2 by sunitinib was detected. Sunitinib induced down-regulation of HSD3B2 mRNA and protein in ACC cell lines (mRNA: 1 μM 44 ± 16%*; 5 μM 22 ± 2%*; 10 μM 19 ± 4%*; protein: 1 μM 82 ± 8%; 5 μM 63 ± 8%*; 10 μM 55 ± 9%*). CYP11B1 was down-regulated at mRNA but not at protein level and CYP11A1 remained unchanged. In conclusion, target molecules of sunitinib are expressed in the vast majority of ACC samples. Sunitinib exhibits anti-proliferative effects in vitro, and appears to specifically block adrenal steroidogenesis by down-regulation of HSD3B2, rendering it a promising option for treatment of ACC

    Prenatal diagnosis of congenital adrenal hyperplasia caused by P450 oxidoreductase deficiency

    Get PDF
    CONTEXT: Mutations in the electron donor enzyme P450 oxidoreductase (POR) result in congenital adrenal hyperplasia with apparent combined 17α-hydroxylase/17,20 lyase and 21-hydroxylase deficiencies, also termed P450 oxidoreductase deficiency (PORD). Major clinical features present in PORD are disordered sex development in affected individuals of both sexes, glucocorticoid deficiency, and multiple skeletal malformations. OBJECTIVE: The objective of the study was to establish a noninvasive approach to prenatal diagnosis of PORD including assessment of malformation severity to facilitate optimized prenatal diagnosis and timely treatment. DESIGN: We analyzed 20 pregnancies with children homozygous or compound heterozygous for disease-causing POR mutations and 1 pregnancy with a child carrying a heterozygous POR mutation by recording clinical and biochemical presentations and fetal ultrasound findings. In 4 of the pregnancies (3 homozygous and 1 heterozygous for disease-causing POR mutations), prenatal analysis of steroid metabolite excretion in maternal urine was carried out by gas chromatography/mass spectrometry during gestational weeks 11–23. RESULTS: Pregnancy complications in our cohort included maternal virilization (6 of 20) with onset in the second trimester. Seven pregnant women presented with low unconjugated estriol at prenatal screening (triple or quadruple antenatal screening test). Overt dysmorphic features were noted in 19 of the 20 babies at birth but observed in only 5 by prenatal ultrasound. These 5 had the most severe malformation phenotypes and poor outcome, whereas the other babies showed normal development. Steroid profiling of maternal urine revealed significantly increased steroids of fetal origin, namely the pregnenolone metabolite epiallopregnanediol and the androgen metabolite androsterone, with concomitant low values for estriol. Diagnostic steroid ratios conclusively indicated PORD as early as gestational week 12. In the heterozygous pregnancy, steroid ratios were only slightly elevated and estriol excretion was normal. CONCLUSION: Prenatal diagnosis in PORD is readily established via urinary steroid metabolite analysis of maternal urine. Visible malformations at prenatal ultrasound predict a severe malformation phenotype

    Alternative pathway androgen biosynthesis and human fetal female virilization

    Get PDF
    Androgen biosynthesis in the human fetus proceeds through the adrenal sex steroid precursor dehydroepiandrosterone, which is converted to testosterone in the gonads, followed by further activation to 5α-dihydrotestosterone in genital skin, thereby facilitating male external genital differentiation. Congenital adrenal hyperplasia due to P450 oxidoreductase deficiency results in disrupted dehydroepiandrosterone biosynthesis, explaining undervirilization in affected boys. However, many affected girls are born virilized, despite low circulating androgens. We hypothesized that this is due to a prenatally active, alternative androgen biosynthesis pathway from 17α-hydroxyprogesterone to 5α-dihydrotestosterone, which bypasses dehydroepiandrosterone and testosterone, with increased activity in congenital adrenal hyperplasia variants associated with 17α-hydroxyprogesterone accumulation. Here we employ explant cultures of human fetal organs (adrenals, gonads, genital skin) from the major period of sexual differentiation and show that alternative pathway androgen biosynthesis is active in the fetus, as assessed by liquid chromatography–tandem mass spectrometry. We found androgen receptor expression in male and female genital skin using immunohistochemistry and demonstrated that both 5α-dihydrotestosterone and adrenal explant culture supernatant induce nuclear translocation of the androgen receptor in female genital skin primary cultures. Analyzing urinary steroid excretion by gas chromatography–mass spectrometry, we show that neonates with P450 oxidoreductase deficiency produce androgens through the alternative androgen pathway during the first weeks of life. We provide quantitative in vitro evidence that the corresponding P450 oxidoreductase mutations predominantly support alternative pathway androgen biosynthesis. These results indicate a key role of alternative pathway androgen biosynthesis in the prenatal virilization of girls affected by congenital adrenal hyperplasia due to P450 oxidoreductase deficiency

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    The identification and characterisation of members of the TbRAB family involved in the early secretory pathway of Trypanosoma brucei

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A bioinformatic analysis of the RAB genes of Trypanosoma brucei.

    No full text
    RAB proteins are small GTPases with vital roles in eukaryotic intracellular transport; orthologous RABs appear to fulfil similar functions in diverse organisms. Trypanosoma brucei spp., the causative organisms of Old World trypanosomiasis of humans and domestic animals, have extremely effective endocytic and exocytic mechanisms that are likely to be involved in maintenance of infection, making study of these systems of importance. Taking advantage of the essential completion of the T. brucei genome, we have re-examined the T. brucei RABs (TbRABs) so far described and identified a total of 16. BLAST searches and phylogenetic analysis show that nine of the TbRABs can confidently be assigned as orthologues or homologues of known RAB proteins from higher eukaryotes, and four more with reasonable probability. The core endocytic pathway is probably similar in complexity to yeast, whilst the early exocytic pathway appears to be more complex than in yeast. Two of the TbRAB family (RAB23 and 28) with clear mammalian orthologues appear to be unusual, and may be involved in nuclear processes and are described in more detail in an accompanying paper. Three TbRABs appear, however, to have no close homologues and may fulfil specialised functions in this organism. The availability of a complete set of TbRABs--which includes orthologues of the RABs responsible for control of the core of the endomembrane system (i.e. RAB1, 2, 4-7 and 11)--provides a first overview of the trafficking complexity that is present within a kinetoplastid parasite. Based on these homologies we suggest a systematic nomenclature for the TbRABs to reflect their functional homologies. This information is of importance both from the perspective of understanding the evolution and diversity of eukaryotic trafficking, but also in providing a framework by which to understand protein processing, trafficking, endocytosis and other related processes in these parasites
    corecore