486 research outputs found

    Polariton Local States in Periodic Bragg Multiple Quantum Well Structures

    Full text link
    We analytically study optical properties of several types of defects in Bragg multiple quantum well structures. We show that a single defect leads to two local polariton modes in the photonic band gap. These modes lead to peculiarities in reflection and transmission spectra. Detailed recommendations for experimental observation of the studied effects are given.Comment: 3 pages, 1 figure, RevTex, Submitted to Opt. Let

    Determination of the Photographic Position of an Object with the Aid of Two and Three Reference Stars

    Get PDF
    Determination of photographic position of object with aid of two and three reference star

    Impurity-induced polaritons in a one-dimensional chain

    Full text link
    A detailed analytical study of an impurity induced polariton band arising inside a spectral gap between lower and upper polariton branches is presented. Using the microcanonical method, we calculate the density of states and localization length of the impurity polaritons. Analytical results are compared with numerical simulations and excellent agreement is found.Comment: 10 pages, 3 figures, RevTe

    Effect of local pumping on random laser modes

    Get PDF
    We have developed a numerical method based on the transfer matrix to calculate the quasimodes and lasing modes in one-dimensional random systems. Depending on the relative magnitude of the localization length versus the system size, there are two regimes in which the quasimodes are distinct in spatial profile and frequency distribution. In the presence of uniform gain, the lasing modes have one-to-one correspondence to the quasimodes in both regimes. Local excitation may enhance the weight of a mode within the gain region due to local amplification, especially in a weakly scattering system.Comment: 8 pages, 5 figure

    Resonance tunneling of polaritons in 1-D chain with a single defect

    Full text link
    We consider propagation of coupled waves (polaritons) formed by a scalar electromagnetic wave and excitations of a finite one dimensional chain of dipoles. It is shown that a microscopic defect (an impurity dipole) embedded in the chain causes resonance tunneling of the electromagnetic wave with the frequency within the forbidden band between two polariton branches. We demonstrate that resonance tunneling occurs due to local polariton states caused by the defect.Comment: 11 pages, 9 figures (PS-format), RevTe

    Tunable local polariton modes in semiconductors

    Get PDF
    We study the local states within the polariton bandgap that arise due to deep defect centers with strong electron-phonon coupling. Electron transitions involving deep levels may result in alteration of local elastic constants. In this case, substantial reversible transformations of the impurity polariton density of states occur, which include the appearance/disappearance of the polariton impurity band, its shift and/or the modification of its shape. These changes can be induced by thermo- and photo-excitation of the localized electron states or by trapping of injected charge carriers. We develop a simple model, which is applied to the OPO_P center in GaPGaP. Further possible experimental realizations of the effect are discussed.Comment: 7 pages, 3 figure

    Local polariton modes and resonant tunneling of electromagnetic waves through periodic Bragg multiple quantum well structures

    Get PDF
    We study analytically defect polariton states in Bragg multiple-quantum-well structures and defect induced changes in transmission and reflection spectra. Defect layers can differ from the host layers in three ways: exciton-light coupling strength, exciton resonance frequency, and inter-well spacing. We show that a single defect leads to two local polariton modes in the photonic bandgap. These modes cause peculiarities in reflection and transmission spectra. Each type of defect can be reproduced experimentally, and we show that each of these plays a distinct role in the optical properties of the system. For some defects, we predict a narrow transmission window in the forbidden gap at the frequency set by parameters of the defect. We obtain analytical expressions for corresponding local frequencies as well as for reflection and transmission coefficients. We show that the presence of the defects leads to resonant tunneling of the electromagnetic waves via local polariton modes accompanied by resonant enhancement of the field inside the sample, even when a realistic absorption is taken into account. On the basis of the results obtained, we make recommendations regarding the experimental observation of the effects studied in readily available samples.Comment: 17 pages, 10 figures, RevTex, Submitted to PR

    Concept of local polaritons and optical properties of mixed polar crystals

    Get PDF
    The concept of local polaritons is used to describe optical properties of mixed crystals in the frequency region of their {\it restrahlen} band. It is shown that this concept allows for a physically transparent explanation of the presence of weak features in the spectra of so called one-mode crystals, and for one-two mode behavior. The previous models were able to explain these features only with the use of many fitting parameters. We show that under certain conditions new impurity-induced polariton modes may arise within the {\it restrahlen} of the host crystals, and study their dispersion laws and density of states. Particularly, we find that the group velocity of these excitations is proportional to the concentration of the impurities and can be thousands of times smaller then the speed of light in vacuum.Comment: 21 pages, 5 figures, RevTex, Phys. Rev. B, 62, 6301 (2000
    • …
    corecore