29 research outputs found
Geological and Hydrogeological Characterization of Springs in a DSGSD Context (Rodoretto Valley – NW Italian Alps)
As continuous groundwater monitoring in the upper sector of Rodoretto Valley (Germanasca Valley, Italian Western Alps) is hampered by logistical problem of data collection during winter and spring months, the only tools currently available to derive hydrogeological information are non-continuous and non-long-term dataset of spring discharge (Q), temperature (T) and electrical conductivity (EC).
In order to quantity aquifer groundwater reserve, available Q dataset of a small mountain spring (Spring 1 CB) was investigated by applying the analytical solutions developed by Boussinesq (J Math Pure Appl 10:5–78, 1904) and Maillet (Essais dı’hydraulique souterraine et fluviale, vol 1. Herman et Cie, Paris, 1905); T and EC datasets were also used to provide qualitative information about the nature of the aquifer that supplies the spring.
The outcomes of the elaborations highlighted the limits of applicability of these methods in the presence of a non-continuous Q dataset: both Boussinesq (J Math Pure Appl 10:5–78, 1904) and Maillet (Essais dı’hydraulique souterraine et fluviale, vol 1. Herman et Cie, Paris, 1905) estimated that discharge values as a function of recession time were found to be consistently lower than the available discharge ones and the estimated groundwater volumes stored over time above the spring level turned out to be underestimated.
Continuous (hourly value) and long-term Q, EC and T values are, therefore, needful to correctly quantify and to make a proper management of groundwater resources in mountain areas
SODI-COLLOID: a combination of static and dynamic light scattering on board the International space station
Microgravity research in space is a complex activity where the often scarce resources available for the launch, accommodation, and operation of instrumentation call for a careful experiment planning and instrument development. In this paper we describe a module of the Selectable Optical Diagnostic Instrument, that has been designed as a compact optical diagnostic instrument for colloidal physics experiments. The peculiarity of the instrument is the combination of a novel light scattering technique known as near field scattering and standard microscopy with a low-coherence laser light source. We describe its main design features, as well as measurement results on colloidal aggregation taken on the International Space Station
NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2—design, manufacturing, and testing of the ultraviolet and visible channel
NOMAD is a spectrometer suite on board the ESA/Roscosmos ExoMars Trace Gas Orbiter, which launched in March 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel, allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at the day- and night-side, and during solar occultations. Here, in part 2 of a linked study, we describe the design, manufacturing, and testing of the ultraviolet and visible spectrometer channel called UVIS. We focus upon the optical design and working principle where two telescopes are coupled to a single grating spectrometer using a selector mechanism
Socio-economic assessement of farmers' vulnerability as water users subject to global change stressors in the hard rock area of southern India. The SHIVA ANR project
International audienceDemand for vulnerability assessments is growing in policy-making circles, to support the choice of appropriate measures and policies to reduce the vulnerability of water users and resources. Through the SHIVA ANR project, we are seeking a method to assess and map the vulnerability of farmers in southern India to both climate and socioeconomic changes, and secondly, to assess the costs and benefits associated with trends farmers' vulnerability in the medium and long-term. The project is focusing on southern India 's hard rock area, as in the geological context, both surface and ground water resources are naturally limited. We are also focusing on farming populations as these are the main water users in the area and rely exclusively on groundwater. The area covers southern India's semi-arid zone, where the rainfall gradient ranges from 600 mm to 1100 mm. Vulnerability is expected to vary according to local climatic conditions but also the socioeconomic characteristics of farming households. The SHIVA research team has been divided into six thematic groups in order to address the different scientific issues : downscaling the regional climate scenario, farm area projections, vulnerability assessments and quantification, vulnerability mapping, hydrological modelling and upscaling, and vulnerability impact assessements. Our approach is multidisciplinary to cater for for numerous inherent themes, and integrated to cater for vulnerability as a dynamic and multidimensional concept. The project 's first results after 10 months of research are presented below
Optical tomography based on phase-shifting schlieren deflectometry
We present a new optical tomography technique based on phase-shifting schlieren deflectometry. The principle is that of computerized tomography. The three-dimensional profile is reconstructed from the deflection angles of rays passing through the tested object. We have investigated optical phantoms chosen in view of the characterization of dendritic growth in a solidification process. Promising results have been obtained with a homogeneous sphere and a bundle of 200 mu m fibers. The deviation angles exceed two degrees with a variation of the refractive index Delta n = 0.025.Anglai
Comparative analysis between analytical approximations and numerical solutions describing recession flow in unconfined hillslope aquifers
Recession flow of aquifers from a hillslope can be described by the non-linear Boussinesq equation. Under strong assumptions and for specific conceptual formulations, different authors derived analytical approximations or linearized versions to this partial differential equation. A comparative analysis between some analytical approximations of the Boussinesq equation and the numerical solution of the recession flow of an unconfined homogeneous aquifer (horizontal, inclined and concave aquifer floor) was carried out. The objective was to define the range where the analytical solutions approximate the numerical solution. The latter was considered in this study as the reference method, because it requires fewer assumptions. From the considered analytical approximations, exponential decay relationships were found to be mainly valid for fine domain materials when horizontal, mild slopes (less than 2%) and concave aquifer floors were considered, but failed to reproduce coarse aquifer numerical model outflows, in contrast to the quadratic decay relationship, which better reproduce outflows in such domains. On the basis of the comparative analysis, it has been found that recession flows obtained with the considered analytical approximations yield similar values only for certain ranges of aquifer properties and geometries