265 research outputs found
Spin wave emission by spin-orbit torque antennas
We study the generation of propagating spin waves in Ta/CoFeB waveguides by
spin-orbit torque antennas and compare them to conventional inductive antennas.
The spin-orbit torque was generated by a transverse microwave current across
the magnetic waveguide. The detected spin wave signals for an in-plane
magnetization across the waveguide (Damon-Eshbach configuration) exhibited the
expected phase rotation and amplitude decay upon propagation when the current
spreading was taken into account. Wavevectors up to about 6 rad/m could be
excited by the spin-orbit torque antennas despite the current spreading,
presumably due to the non-uniformity of the microwave current. The relative
magnitude of generated anti-damping spin-Hall and Oersted fields was calculated
within an analytic model and it was found that they contribute approximately
equally to the total effective field generated by the spin-orbit torque
antenna. Due to the ellipticity of the precession in the ultrathin waveguide
and the different orientation of the anti-damping spin-Hall and Oersted fields,
the torque was however still dominated by the Oersted field. The prospects for
obtaining a pure spin-orbit torque response are discussed, as are the energy
efficiency and the scaling properties of spin-orbit torque antennas.Comment: 20 pages, 5 figure
Design and Implementation of an Open Source Indexing Solution for a Large Set of Radiological Reports and Images
This paper hopes to share the insights we experienced during designing, building, and running an indexing solution for a large set of radiological reports and images in a production environment for more than 3Â years. Several technical challenges were encountered and solved in the course of this project. One hundred four million words in 1.8 million radiological reports from 1989 to the present were indexed and became instantaneously searchable in a user-friendly fashion; the median query duration is only 31Â ms. Currently, our highly tuned index holds 332,088 unique words in four languages. The indexing system is feature-rich and language-independent and allows for making complex queries. For research and training purposes it certainly is a valuable and convenient addition to our radiology informatics toolbox. Extended use of open-source technology dramatically reduced both implementation time and cost. All software we developed related to the indexing project has been made available to the open-source community covered by an unrestricted Berkeley Software Distribution-style license
Dynamical influence of vortex-antivortex pairs in magnetic vortex oscillators
We study the magnetization dynamics in a nanocontact magnetic vortex
oscillators as function of temperature. Low temperature experiments reveal that
the dynamics at low and high currents differ qualitatively. At low currents, we
excite a temperature independent standard oscillation mode, consisting in the
gyrotropic motion of a free layer vortex about the nanocontact. Above a
critical current, a sudden jump of the frequency is observed, concomitant with
a substantial increase of the frequency versus current slope factor. Using
micromagnetic simulation and analytical modeling, we associate this new regime
to the creation of a vortex-antivortex pair in the pinned layer of the spin
valve. The vortex-antivortex distance depends on the Oersted field which favors
a separation, and on the exchange bias field, which favors pair merging. The
pair in the pinned layer provides an additional spin torque altering the
dynamics of the free layer vortex, which can be quantitatively accounted for by
an analytical model
Auto-oscillation threshold, narrow spectral lines, and line jitter in spin-torque oscillators based on MgO magnetic tunnel junctions
We demonstrate spin torque induced auto-oscillation in MgO-based magnetic
tunnel junctions. At the generation threshold, we observe a strong line
narrowing down to 6 MHz at 300K and a dramatic increase in oscillator power,
yielding spectrally pure oscillations free of flicker noise. Setting the
synthetic antiferromagnet into autooscillation requires the same current
polarity as the one needed to switch the free layer magnetization. The induced
auto-oscillations are observed even at zero applied field, which is believed to
be the acoustic mode of the synthetic antiferromagnet. While the phase
coherence of the auto-oscillation is of the order of microseconds, the power
autocorrelation time is of the order of milliseconds and can be strongly
influenced by the free layer dynamics
Current-driven microwave oscillations in current perpendicular-to-plane spin-valve nanopillars
We study the current and temperature dependences of the microwave voltage
emission of spin-valve nanopillars subjected to an in-plane magnetic field and
a perpendicular-to-plane current. Despite the complex multilayer geometry,
clear microwave emission is shown to be possible and spectral lines as narrow
as 3.8 MHz (at 150 K) are observed.Comment: To appear in Applied Physics Letter
- …