37 research outputs found

    Mean Arterial Pressure Change Associated with Cerebral Blood Flow in Healthy Older Adults

    Get PDF
    We investigate over a 12-year period the association between regional cerebral blood flow (CBF) and cardiovascular risk factors in a prospective cohort of healthy older adults (81.96 +/- 3.82 year-old) from the Cognitive REServe and Clinical ENDOphenotype (CRESCENDO) study. Cardiovascular risk factors were measured over 12 years, and gray matter CBF was measured at the end of the study from high-resolution magnetic resonance imaging using arterial spin labeling. The association between cardiovascular risk factors, their long-term change, and CBF was assessed using multivariate linear regression models. Women were observed to have higher CBF than men (p < 0.05). Increased mean arterial pressure (MAP) over the 12-year period was correlated with a low cerebral blood flow (p < 0.05, R(2) = 0.21), whereas no association was detected between CBF and MAP at the time of imaging. High levels of glycemia tended to be associated with low cerebral blood flow values (p < 0.05). Age, alcohol consumption, smoking status, body mass index, history of cardiovascular disease, and hypertension were not associated with CBF. Our main result suggests that change in MAP is the most significant predictor of future CBF in older adults

    Validation of a quantitative susceptibility mapping acquisition and reconstruction pipeline using a new iron sucrose based MR susceptibility phantom.

    No full text
    International audienceQuantitative susceptibility mapping is a new technique and its processing pipeline has to be validated before clinical practice. We described an easy to build magnetic resonance (MR) susceptibility phantom based on iron sucrose

    Combining Electrostimulation With Fiber Tracking to Stratify the Inferior Fronto-Occipital Fasciculus

    No full text
    International audienceThe inferior fronto-occipital fasciculus (IFOF) is one of the longest association fiber tracts of the brain. According to the most recent anatomical studies, it may be formed by several layers, suggesting a role in multiple cognitive functions. However, to date, no attempt has been made to dissociate the functional contribution of the IFOF subpathways. In this study, real-time, cortico-subcortical mapping with direct electrostimulation was performed in 111 patients operated on in wide-awake surgery for a right low-grade glioma. Patients performed two behavioral tasks during stimulation, tapping, respectively, mentalizing and visual semantic cognition—two functions supposed to be partly mediated by the IFOF. Responsive white matter sites were first subjected to a clustering analysis to assess potential topological differences in network organization. Then they were used as seeds to generate streamline tractograms based on the HC1021 diffusion dataset (template-based approach). The tractograms obtained for each function were overlapped and contrasted to determine whether some fiber pathways were more frequently involved in one or the other function. The obtained results not only provided strong evidence for a role of the right IFOF in both functions, but also revealed that the tract is dissociable into two functional strata according to a ventral (semantic) and dorsal (mentalizing) compartmentalization. Besides, they showed a high degree of anatomo-functionnal variability across patients in the functional implication of the IFOF, possibly related to symmetrical/hemispheric differences in network organization. Collectively, these findings support the view that the right IFOF is a functionally multi-layered structure, with nevertheless interindividual variations

    Functional PET Neuroimaging in Consciousness Evaluation: Study Protocol

    No full text
    Ensuring a robust and reliable evaluation of coma deepness and prognostication of neurological outcome is challenging. We propose to develop PET neuroimaging as a new diagnostic and prognosis tool for comatose patients using a recently published methodology to perform functional PET (fPET). This exam permits the quantification of task-specific changes in neuronal metabolism in a single session. The aim of this protocol is to determine whether task-specific changes in glucose metabolism during the acute phase of coma are able to predict recovery at 18 months. Participation will be proposed for all patients coming for a standard PET-CT in our center in order to evaluate global cerebral metabolism during the comatose state. Legally appointed representative consent will be obtained to slightly modify the exam protocol: (1) 18F-fluorodeoxyglucose (18F-FDG) bolus plus continuous infusion instead of a simple bolus and (2) more time under camera to perform dynamic acquisition. Participants will undergo a 55-min fPET session with a 20% bolus + 80% infusion protocol. Two occurrences of three block (5-min rest, 10-min auditory stimulation and 10-min emotional auditory stimulation) will be performed after reaching equilibrium of FDG arterial concentration. We will compare the regional brain metabolism at rest and during the sessions of auditory and emotional auditory stimulation to search for a determinant of coma recovery (18 months of follow-up after the exam). Emotional auditory stimulation should induce an activation of: the auditory cortex, the consciousness areas and the neural circuitry for emotion (function to coma deepness). An activation analysis will be carried out to highlight regional brain activation using dedicated custom-made software based on Python statistical and image processing toolboxes. The association between activation levels and the Coma Recovery Scale-Revisited (CRS-R) will be assessed using multivariate analysis. If successful, the results from this study will help improve coma prognosis evaluation based on the pattern of neuronal metabolism at the onset of the pathology. The study protocol, rationale and methods are described in this paper

    Phase Contrast MRI Suggests an Internal Carotid Vascular Tone Alteration in Migraines

    No full text
    International audience Migraine is the most common neurological disorder and the third most common disease worldwide. However, the underlying mechanisms contributing to its development are not completely understood. Symptoms may arise from a combination of dilation-independent vascular events and neurogenic mechanisms interacting throughout the brain and within the trigeminovascular system in the meninges MATERIALS AND METHOD: We report here a case of a patient with a suspected familial hemiplegic migraine who presented an increased recurrence of events from one per month to one every other day. Three magnetic resonance imaging (MRI) acquisitions were performed after the appearance of a strong crisis which included a paresthesia and aphasia along with headaches. Two MRIs were performed close to the crisis, while the last one was done 1 month later

    Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study

    No full text
    International audienceDespite a better understanding of their anatomy, the functional role of frontal pathways, i.e., the fronto-striatal tract (FST) and frontal aslant tract (FAT), remains obscure. We studied 19 patients who underwent awake surgery for a frontal glioma (14 left, 5 right) by performing intraoperative electrical mapping of both fascicles during motor and language tasks. Furthermore, we evaluated the relationship between these tracts and the eventual onset of transient postoperative disorders. We also performed post-surgical tract-specific measurements on probabilistic tractography. All patients but one experienced intraoperative inhibition of movement and/or speech during subcortical electrostimulation. On postoperative tractography, the subcortical distribution of stimulated sites corresponded to the spatial course of the FST and/or FAT. Furthermore, we found a significant correlation between postoperative worsening and distances between these tracts and resection cavity. A resection close to the (right or left) FST was correlated with transitory motor initiation disorders (p = 0.026), while a resection close to the left FAT was associated with transient speech initiation disorders (p = 0.003). Moreover, the measurements of average distances between resection cavity and left FAT showed a positive correlation with verbal fluency in both semantic (p = 0.019) and phonemic scores (p = 0.017), while average distances between surgical cavity and left FST showed a positive correlation with verbal fluency scores in both semantic (p = 0.0003) and phonemic modalities (p = 0.037). We suggest that FST and FAT would cooperatively play a role in self-initiated movement and speech, as a part of "negative motor network" involving the pre-supplementary motor area, left inferior frontal gyrus and caudate nucleus

    Non invasive blood flow features estimation in cerebral arteries from uncertain medical data

    No full text
    International audienceA methodology for non-invasive estimation of the pressure in internal carotid arteries is proposed. It uses data assimilation and Ensemble Kalman filters in order to identify unknown parameters in a mathematical description of the cerebral network. The approach uses patient specific blood flow rates extracted from Magnetic Resonance Angiography and Magnetic Resonance Imaging. This construction is necessary as the simulation of blood flows in complex arterial networks, such as the circle of Willis, is not straightforward because hemodynamic parameters are unknown as well as the boundary conditions necessary to close this complex system with many outlets. For instance, in clinical cases, the values of Windkessel model parameters or the Young's modulus and the thickness of the arteries are not available on per-patient cases. To make the approach computational efficient, a reduced order zero-dimensional compartment model is used for blood flow dynamics. Using this simplified model, the proof-of-concept study demonstrates how to use the EnKF as an optimization tool to find parameters and how to make the inverse hemodynamic problem tractable. The predicted blood flow rates in the internal carotid arteries and the predicted systolic and diastolic brachial blood pressures are found to be in good agreement with the clinical measurements

    Functional reorganization of the attentional networks in low-grade glioma patients: a longitudinal study.

    No full text
    International audienceRight brain damage often provokes deficits of visuospatial attention. Although the spatial attention networks have been widely investigated in stroke patients as well as in the healthy brain, little is known about the impact of slow growing lesions in the right hemisphere. We here present a longitudinal study of 20 patients who have been undergoing awake brain surgery with per-operative line bisection testing. Our aim was to investigate the impact of tumour presence and of tumour resection on the functional (re)organization of the attention networks. We assessed patients' performance on lateralized target detection, visual exploration and line bisection before surgery, and in the acute and post-acute operative phases after surgery. Clear evidence for transient neglect signs was observed in the acute post-operative phase, although full recovery had invariably occurred in all patients. The resection of the right angular gyrus was associated with transient neglect-like symptoms in all tasks, whereas resection of more anterior regions correlated with transient deficits only in visual exploration or detection (but not in line bisection). The attentional networks showed substantial functional recovery. This impressive pattern of recovery is discussed in terms of involvement of the contralateral left hemisphere and of preservation of long-range white matter pathways within the right hemisphere
    corecore