118 research outputs found

    Quantum spatial propagation of squeezed light in a degenerate parametric amplifier

    Get PDF
    Differential equations which describe the steady state spatial evolution of nonclassical light are established using standard quantum field theoretic techniques. A Schroedinger equation for the state vector of the optical field is derived using the quantum analog of the slowly varying envelope approximation (SVEA). The steady state solutions are those that satisfy the time independent Schroedinger equation. The resulting eigenvalue problem then leads to the spatial propagation equations. For the degenerate parametric amplifier this method shows that the squeezing parameter obey nonlinear differential equations coupled by the amplifier gain and phase mismatch. The solution to these differential equations is equivalent to one obtained from the classical three wave mixing steady state solution to the parametric amplifier with a nondepleted pump

    Climbing Mount Scalable: Physical-Resource Requirements for a Scalable Quantum Computer

    Full text link
    The primary resource for quantum computation is Hilbert-space dimension. Whereas Hilbert space itself is an abstract construction, the number of dimensions available to a system is a physical quantity that requires physical resources. Avoiding a demand for an exponential amount of these resources places a fundamental constraint on the systems that are suitable for scalable quantum computation. To be scalable, the effective number of degrees of freedom in the computer must grow nearly linearly with the number of qubits in an equivalent qubit-based quantum computer.Comment: LATEX, 24 pages, 1 color .eps figure. This new version has been accepted for publication in Foundations of Physic
    corecore