206 research outputs found

    Cryogenic scintillation properties of n-type GaAs for the direct detection of MeV/c2 dark matter

    Get PDF
    This paper is the first report of n-type GaAs as a cryogenic scintillation radiation detector for the detection of electron recoils from interacting dark matter (DM) particles in the poorly explored MeV/c2 mass range. Seven GaAs samples from two commercial suppliers and with different silicon and boron concentrations were studied for their low temperature optical and scintillation properties. All samples are n-type even at low temperatures and exhibit emission between silicon donors and boron acceptors that peaks at 1.33 eV (930 nm). The lowest excitation band peaks at 1.44 eV (860 nm), and the overlap between the emission and excitation bands is small. The X-ray excited luminosities range from 7 to 43 photons/keV. Thermally stimulated luminescence measurements show that n-type GaAs does not accumulate metastable radiative states that could cause afterglow. Further development and use with cryogenic photodetectors promises a remarkable combination of large target size, ultra-low backgrounds, and a sensitivity to electron recoils of a few eV that would be produced by DM particles as light as a few MeV/c2

    Semiconductor High-Energy Radiation Scintillation Detector

    Get PDF
    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. The most important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

    The quest for the ideal inorganic scintillator,"

    Get PDF
    Abstract The past half century has witnessed the discovery of many new inorganic scintillator materials and numerous advances in our understanding of the basic physical processes governing the transformation of ionizing radiation into scintillation light. Whereas scintillators are available with a good combination of physical properties, none provides the desired combination of stopping power, light output, and decay time. A review of the numerous scintillation mechanisms of known inorganic scintillators reveals why none of them is both bright and fast. The mechanisms of radiative recombination in wide-bandgap direct semiconductors, however, remain relatively unexploited for scintillators. We describe how suitably doped semiconductor scintillators could provide a combination of high light output, short decay time, and linearity of response that approach fundamental limits

    First-principles calculations of the self-trapped exciton in crystalline NaCl

    Full text link
    The atomic and electronic structure of the lowest triplet state of the off-center (C2v symmetry) self-trapped exciton (STE) in crystalline NaCl is calculated using the local-spin-density (LSDA) approximation. In addition, the Franck-Condon broadening of the luminescence peak and the a1g -> b3u absorption peak are calculated and compared to experiment. LSDA accurately predicts transition energies if the initial and final states are both localized or delocalized, but 1 eV discrepancies with experiment occur if one state is localized and the other is delocalized.Comment: 4 pages with 4 embeddded figure

    GaAs as a Bright Cryogenic Scintillator for the Detection of Low-Energy Electron Recoils From MeV/c 2 Dark Matter

    Get PDF
    This article presents the measurements of the luminescence and scintillation under X-ray of undoped, Si-doped, and Si, B codoped gallium-arsenide (GaAs) samples at cryogenic temperature over a wide infrared (IR) region using Si and InGaAs photodetectors. The undoped GaAs has a narrow emission band at 838 nm (1.48 eV) and a low light output of about 2 ph/keV. The GaAs:Si has three broad luminescence bands at 830 nm (1.49 eV), 1070 nm (1.16 eV), and 1335 nm (0.93 eV) and a light output of about 67 ph/keV. GaAs:(Si, B) has four luminescence bands at 860 nm (1.44 eV), 930 nm (1.33 eV), 1070 nm (1.16 eV), and 1335 nm (0.93 eV) with a light yield of approximately 119 ph/keV. With advances in photodetection, GaAs promises to be a useful cryogenic scintillator for the detection of electron recoils from MeV/c2 dark matter
    corecore