2,108 research outputs found

    Cinematic “pas de deux”: the dialogue between Maya Deren's experimental filmmaking and Talley Beatty's black ballet dancer in A Study in Choreography for Camera (1945)

    Get PDF
    A Study in Choreography for Camera (1945) is a collaborative enterprise between avant-garde filmmaker Maya Deren and African American ballet dancer Talley Beatty. Study is significant in experimental film history – it was one of three films by Deren that shaped the emergence of the postwar avant-garde cinema movement in the US. The film represents a pioneering cross-cultural and cross-disciplinary dialogue between Beatty's ballet dancing and Deren's experimental cinematic technique. The film explores complex emotional experiences through a cinematic re-creation of Deren's understanding of ritual (which she borrowed from Katherine Dunham's Haitian experiences after spending many years documenting vodou) while allowing a leading black male dancer to display his artistry on-screen. I show that cultures and artistic forms widely dismissed as incompatible are rendered equivocal. Study adopts a stylized and rhythmic technique borrowed from dance in its attempt to establish cinema as “art,” and I foreground Beatty's contribution to the film, arguing that his technically complex movements situate him as joint author of its artistic vision. The essay also explores tensions between the artistic intentions of Deren, who sought to deprivilege the individual performer in favour of the filmic “ritual,” and Beatty, who sought to display his individual skills as a technically accomplished dancer

    Towards to a modern higher education institutions in Poland

    Get PDF
    Since the dawn of time, universities have contributed significantly to the economic development. However, presently operating higher education institutions are characterized by a significant diversity of goals, missions and functions, which significantly go beyond the ones traditionally assigned to this type of institution

    A semi-proximal-based strictly contractive Peaceman-Rachford splitting method

    Full text link
    The Peaceman-Rachford splitting method is very efficient for minimizing sum of two functions each depends on its variable, and the constraint is a linear equality. However, its convergence was not guaranteed without extra requirements. Very recently, He et al. (SIAM J. Optim. 24: 1011 - 1040, 2014) proved the convergence of a strictly contractive Peaceman-Rachford splitting method by employing a suitable underdetermined relaxation factor. In this paper, we further extend the so-called strictly contractive Peaceman-Rachford splitting method by using two different relaxation factors, and to make the method more flexible, we introduce semi-proximal terms to the subproblems. We characterize the relation of these two factors, and show that one factor is always underdetermined while the other one is allowed to be larger than 1. Such a flexible conditions makes it possible to cover the Glowinski's ADMM whith larger stepsize. We show that the proposed modified strictly contractive Peaceman-Rachford splitting method is convergent and also prove O(1/t)O(1/t) convergence rate in ergodic and nonergodic sense, respectively. The numerical tests on an extensive collection of problems demonstrate the efficiency of the proposed method

    Global Optimization with Polynomials

    Get PDF
    The class of POP (Polynomial Optimization Problems) covers a wide rang of optimization problems such as 0 - 1 integer linear and quadratic programs, nonconvex quadratic programs and bilinear matrix inequalities. In this paper, we review some methods on solving the unconstraint case: minimize a real-valued polynomial p(x) : Rn â R, as well the constraint case: minimize p(x) on a semialgebraic set K, i.e., a set defined by polynomial equalities and inequalities. We also summarize some questions that we are currently considering.Singapore-MIT Alliance (SMA

    Resource efficient on-node spike sorting

    Get PDF
    Current implantable brain-machine interfaces are recording multi-neuron activity by utilising multi-channel, multi-electrode micro-electrodes. With the rapid increase in recording capability has come more stringent constraints on implantable system power consumption and size. This is even more so with the increasing demand for wireless systems to increase the number of channels being monitored whilst overcoming the communication bottleneck (in transmitting raw data) via transcutaneous bio-telemetries. For systems observing unit activity, real-time spike sorting within an implantable device offers a unique solution to this problem. However, achieving such data compression prior to transmission via an on-node spike sorting system has several challenges. The inherent complexity of the spike sorting problem arising from various factors (such as signal variability, local field potentials, background and multi-unit activity) have required computationally intensive algorithms (e.g. PCA, wavelet transform, superparamagnetic clustering). Hence spike sorting systems have traditionally been implemented off-line, usually run on work-stations. Owing to their complexity and not-so-well scalability, these algorithms cannot be simply transformed into a resource efficient hardware. On the contrary, although there have been several attempts in implantable hardware, an implementation to match comparable accuracy to off-line within the required power and area requirements for future BMIs have yet to be proposed. Within this context, this research aims to fill in the gaps in the design towards a resource efficient implantable real-time spike sorter which achieves performance comparable to off-line methods. The research covered in this thesis target: 1) Identifying and quantifying the trade-offs on subsequent signal processing performance and hardware resource utilisation of the parameters associated with analogue-front-end. Following the development of a behavioural model of the analogue-front-end and an optimisation tool, the sensitivity of the spike sorting accuracy to different front-end parameters are quantified. 2) Identifying and quantifying the trade-offs associated with a two-stage hybrid solution to realising real-time on-node spike sorting. Initial part of the work focuses from the perspective of template matching only, while the second part of the work considers these parameters from the point of whole system including detection, sorting, and off-line training (template building). A set of minimum requirements are established which ensure robust, accurate and resource efficient operation. 3) Developing new feature extraction and spike sorting algorithms towards highly scalable systems. Based on waveform dynamics of the observed action potentials, a derivative based feature extraction and a spike sorting algorithm are proposed. These are compared with most commonly used methods of spike sorting under varying noise levels using realistic datasets to confirm their merits. The latter is implemented and demonstrated in real-time through an MCU based platform.Open Acces

    Introduction to the Films

    Get PDF
    No abstract availableThis transcription was originally published by Parallel Press, an imprint of the University of Wisconsin-Madison Libraries, as part of The International Journal of Screendance, Volume 2 (2012), Parallel Press. It is made available here with the kind permission of Parallel Press

    Pattern Formation and flow to Fracture Transitions in Granular and Sheer Thickening Materials

    Get PDF
    The conditions under which a mixture of water and grains will fracture like a solid, rather than flow like a liquid, is the subject of this thesis. Flow to fracture transitions in saturated granular materials are relevant to numerous geological and engineering environments, in-cluding magma cavern activity, methane venting on seabeds, carbon dioxide storage, food processing, and innovations in body armour. To examine the flow to fracture transition, two systems are considered. The first is gas-driven fracturing of settled granular media, a slow creeping process that forms labyrinthine patterns. The second is gas-driven fractur-ing of suspended cornstarch particles, a system which exhibits fascinating “discontinuous shear thickening” behaviour, a topic of much debate in literature. Both systems are sub-ject to experiments within a Hele-Shaw cell, which enables the visualisation of pseudo-2D invasion flow or fracture patterns. Image analysis performed on these patterns led to the application of theories that can predict their behaviours. Fracture formation is found to be a friction dominated process. The invading pressure pushes on the local grains while surface tension of the receding water pulls on them until frictional forces become strong enough to maintain a front, forcing the pressure to disturb grains elsewhere, and in do-ing so extend and branch the fractures forming a patterned network. Various parameter studies are performed to uncover the variables that determine why a mixture might flow or fracture. Interestingly, the first system is found to transition from fracturing to flowing with increasing pressures, whilst the second system is found to do the opposite
    corecore