6 research outputs found
Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts.
Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles-some without homogeneous analogues-for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts in our laboratories are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence, and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g., π-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g., oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl2) or reduced (e.g., with H2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. In this Account, we will briefly introduce metal clusters and describe the synthesis and characterizations of supported DEMCs. We will present the catalysis studies of supported DEMCs in both the batch and flow modes. Lastly, we will summarize the current state of heterogenizing homogeneous catalysis and provide future directions for this area of research
Recommended from our members
New Insights into Aldol Reactions of Methyl Isocyanoacetate Catalyzed by Heterogenized Homogeneous Catalysts.
The Hayashi-Ito aldol reaction of methyl isocyanoacetate (MI) and benzaldehydes, a classic homogeneous Au(I)-catalyzed reaction, was studied with heterogenized homogeneous catalysts. Among dendrimer encapsulated nanoparticles (NPs) of Au, Pd, Rh, or Pt loaded in mesoporous supports and the homogeneous analogues, the Au NPs led to the highest yield and highest diastereoselectivity of products in toluene at room temperature. The Au catalyst was stable and was recycled for at least six runs without substantial deactivation. Moreover, larger pore sizes of the support and the use of a hydrophobic solvent led to a high selectivity for the trans diastereomer of the product. The activation energy is sensitive to neither the size of Au NPs nor the support. A linear Hammett plot was obtained with a positive slope, suggesting an increased electron density on the carbonyl carbon atom in the rate-limiting step. IR studies revealed a strong interaction between MI and the gold catalyst, supporting the proposed mechanism, in which rate-limiting step involves an electrophilic attack of the aldehyde on the enolate formed from the deprotonated MI
Recommended from our members
New Insights into Aldol Reactions of Methyl Isocyanoacetate Catalyzed by Heterogenized Homogeneous Catalysts
The
Hayashi–Ito aldol reaction of methyl isocyanoacetate (MI) and
benzaldehydes, a classic homogeneous AuÂ(I)-catalyzed reaction, was
studied with heterogenized homogeneous catalysts. Among dendrimer
encapsulated nanoparticles (NPs) of Au, Pd, Rh, or Pt loaded in mesoporous
supports and the homogeneous analogues, the Au NPs led to the highest
yield and highest diastereoselectivity of products in toluene at room
temperature. The Au catalyst was stable and was recycled for at least
six runs without substantial deactivation. Moreover, larger pore sizes
of the support and the use of a hydrophobic solvent led to a high
selectivity for the trans diastereomer of the product. The activation
energy is sensitive to neither the size of Au NPs nor the support.
A linear Hammett plot was obtained with a positive slope, suggesting
an increased electron density on the carbonyl carbon atom in the rate-limiting
step. IR studies revealed a strong interaction between MI and the
gold catalyst, supporting the proposed mechanism, in which rate-limiting
step involves an electrophilic attack of the aldehyde on the enolate
formed from the deprotonated MI