1,029 research outputs found

    Study on the mechanism of open-flavor strong decays

    Full text link
    The open-flavor strong decays are studied based on the interaction of potential quark model. The decay process is related to the s-channel contribution of the same scalar confinment and one-gluon-exchange(OGE) interaction in the quark model. After we adopt the prescription of massive gluons in time-like region from the lattice calculation, the approximation of four-fermion interaction is applied. The numerical calculation is performed to the meson decays in uu, dd, ss light flavor sector. The analysis of the D/SD/S ratios of b1ωπb_1\rightarrow \omega \pi and a1ρπa_1\rightarrow \rho \pi show that the scalar interaction should be dominant in the open-flavor decays

    Study the Heavy Molecular States in Quark Model with Meson Exchange Interaction

    Full text link
    Some charmonium-like resonances such as X(3872) can be interpreted as possible D()D()D^{(*)}D^{(*)} molecular states. Within the quark model, we study the structure of such molecular states and the similar B()B()B^{(*)}B^{(*)} molecular states by taking into account of the light meson exchange (π\pi, η\eta, ρ\rho, ω\omega and σ\sigma) between two light quarks from different mesons

    Fine Splitting in Charmonium Spectrum with Channel Coupling Effect

    Full text link
    We study the fine splitting in charmonium spectrum in quark model with the channel coupling effect, including DDDD, DDDD^*, DDD^*D^* and DsDsD_sD_s, DsDsD_sD_s^*, DsDsD_s^*D_s^* channels. The interaction for channel coupling is constructed from the current-current Lagrangian related to the color confinement and the one-gluon exchange potentials. By adopting the massive gluon propagator from the lattice calculation in the nonperturbative region, the coupling interaction is further simplified to the four-fermion interaction. The numerical calculation still prefers the assignment 1++1^{++} of X(3872).Comment: Submitted to Chinese Physics

    Dynamical study of the possible molecular state X(3872) with the s-channel one gluon exchange interaction

    Full text link
    The recently observed X(3872) resonance, which is difficult to be assigned a conventional ccˉc\bar{c} charmonium state in the quark model, may be interpreted as a molecular state. Such a molecular state is a hidden flavor four quark state because of its charmonium-like quantum numbers. The s-channel one gluon exchange is an interaction which only acts in the hidden flavor multi-quark system. In this paper, we will study the X(3872) and other similiar hidden flavor molecular states in a quark model by taking into account of the s-channel one gluon exchange interaction

    Single-photon-assisted entanglement concentration of a multi-photon system in a partially entangled W state with weak cross-Kerr nonlinearity

    Full text link
    We propose a nonlocal entanglement concentration protocol (ECP) for NN-photon systems in a partially entangled W state, resorting to some ancillary single photons and the parity-check measurement based on cross-Kerr nonlinearity. One party in quantum communication first performs a parity-check measurement on her photon in an NN-photon system and an ancillary photon, and then she picks up the even-parity instance for obtaining the standard W state. When she obtains an odd-parity instance, the system is in a less-entanglement state and it is the resource in the next round of entanglement concentration. By iterating the entanglement concentration process several times, the present ECP has the total success probability approaching to the limit in theory. The present ECP has the advantage of a high success probability. Moreover, the present ECP requires only the NN-photon system itself and some ancillary single photons, not two copies of the systems, which decreases the difficulty of its implementation largely in experiment. It maybe have good applications in quantum communication in future.Comment: 7 pages, 3 figure

    Realization of Two-Dimensional Spin-orbit Coupling for Bose-Einstein Condensates

    Full text link
    Cold atoms with laser-induced spin-orbit (SO) interactions provide intriguing new platforms to explore novel quantum physics beyond natural conditions of solids. Recent experiments demonstrated the one-dimensional (1D) SO coupling for boson and fermion gases. However, realization of 2D SO interaction, a much more important task, remains very challenging. Here we propose and experimentally realize, for the first time, 2D SO coupling and topological band with 87^{87}Rb degenerate gas through a minimal optical Raman lattice scheme, without relying on phase locking or fine tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in the momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including the highly-sought-after topological superfluid phases.Comment: 27 pages, 5 figure

    Soil Carbon Biogeochemistry in Arid and Semiarid Forests

    Get PDF
    Soil is the largest carbon pool in the terrestrial ecosystem. Even small changes in the soil carbon pool would have huge impacts on atmospheric CO2 concentrations and thus mitigate or intensify global warming. Global forest contains 383 ± 30 × 1015 g carbon stock in soils to a 1-m depth, which is approximately 50% of the carbon stored in the atmosphere. Arid and semiarid areas with more than 30% of the world’s land surface are characterized by low and sporadic moisture availability and sparse or discontinuous vegetation, both spatially and temporally. Vegetation, water, and nutrients are intimately coupled in the semiarid environments with strong feedbacks and interactions occurring across fine to coarse scales. In this chapter, we will review the cutting-edge work in forest soil carbon biogeochemistry undertaken in the last three decades. We also attempt to synthesize recent advances in soil carbon biogeochemistry in arid and semiarid regions and discuss future research needs and directions
    corecore