16 research outputs found

    The Field-Testing of a Novel Integrated Mapping Protocol for Neglected Tropical Diseases

    Get PDF
    Neglected tropical diseases (NTDs) cause significant physical debilitation, lowered economic productivity, and social ostracism for afflicted individuals. Five NTDs with available preventive chemotherapy: lymphatic filariasis (LF), trachoma, schistosomiasis, onchocerciasis and the three soil-transmitted helminths (STH); have been targeted for control or elimination, but resource constraints in endemic countries have impeded progress toward these goals. We have developed an integrated mapping protocol, Integrated Threshold Mapping (ITM) for use by Ministries of Health to decide where public health interventions for NTDs are needed. We compared this protocol to the World Health Organizations disease-specific mapping protocols in Mali and Senegal. Results from both methodologies indicated the same public health interventions for trachoma, LF and STH, while the ITM methodology resulted in a more targeted intervention for schistosomiasis. Our study suggests that the integrated methodology, which is also less expensive and logistically more feasible to implement, could replace disease-specific mapping protocols in resource-poor NTD-endemic countries

    Dynamics of antigenemia and transmission intensity of Wuchereria bancrofti following cessation of mass drug administration in a formerly highly endemic region of Mali

    Get PDF
    Background After seven annual rounds of mass drug administration (MDA) in six Malian villages highly endemic for Wuchereria bancrofti (overall prevalence rate of 42.7%), treatment was discontinued in 2008. Surveillance was performed over the ensuing 5 years to detect recrudescence. Methods Circulating filarial antigen (CFA) was measured using immunochromatographic card tests (ICT) and Og4C3 ELISA in 6–7 year-olds. Antibody to the W. bancrofti infective larval stage (L3) antigen, Wb123, was tested in the same population in 2012. Microfilaraemia was assessed in ICT-positive subjects. Anopheles gambiae complex specimens were collected monthly using human landing catch (HLC) and pyrethrum spray catch (PSC). Anopheles gambiae complex infection with W. bancrofti was determined by dissection and reverse transcriptase polymerase chain reaction (RT-PCR) of mosquito pools. Results Annual CFA prevalence rates using ICT in children increased over time from 0% (0/289) in 2009 to 2.7% (8/301) in 2011, 3.9% (11/285) in 2012 and 4.5% (14/309) in 2013 (trend χ 2  = 11.85, df =3, P = 0.0006). Wb123 antibody positivity rates in 2013 were similar to the CFA prevalence by ELISA (5/285). Although two W. bancrofti-infected Anopheles were observed by dissection among 12,951 mosquitoes collected by HLC, none had L3 larvae when tested by L3-specific RT-PCR. No positive pools were detected among the mosquitoes collected by pyrethrum spray catch. Whereas ICT in 6–7 year-olds was the major surveillance tool, ICT positivity was also assessed in older children and adults (8–65 years old). CFA prevalence decreased in this group from 4.9% (39/800) to 3.5% (28/795) and 2.8% (50/1,812) in 2009, 2011 and 2012, respectively (trend χ 2  = 7.361, df =2, P = 0.0067). Some ICT-positive individuals were microfilaraemic in 2009 [2.6% (1/39)] and 2011 [8.3% (3/36)], but none were positive in 2012 or 2013. Conclusion Although ICT rates in children increased over the 5-year surveillance period, the decrease in ICT prevalence in the older group suggests a reduction in transmission intensity. This was consistent with the failure to detect infective mosquitoes or microfilaraemia. The threshold of ICT positivity in children may need to be re-assessed and other adjunct surveillance tools considered

    "Our interventions are still here to support communities during the pandemic": Resuming mass drug administration for neglected tropical diseases after COVID-19 implementation delays.

    Get PDF
    The COVID-19 pandemic disrupted essential health services, including those provided by national neglected tropical disease (NTD) programs. Most mass drug administration (MDA) programs were postponed for 6-12 months following World Health Organization guidance released in April 2020 to temporarily halt NTD programs and launch necessary COVID-19 precautions. While NTD-endemic countries have since resumed MDA activities, it is critical to understand implementers' perspectives on the key challenges and opportunities for program relaunch, as these insights are critical for maximizing gains towards disease control and elimination during public health emergencies. Using data from using online surveys and focus group discussions, this mixed-methods study sought perspectives from Ministry of Health NTD Program Managers and implementing partners from non-governmental organizations working in sub-Saharan Africa. Data analysis revealed that findings converged around several main themes: disruptions for MDA programs included resource shortages due to prioritization of pandemic response, challenges adhering to COVID-19 safety protocols, and community hesitancy due to coronavirus transmission fears. Identified solutions for restarting MDA programs focused on adapting intervention delivery and packaging to minimize disease transmission, embracing technology to optimize intervention planning and delivery, and identifying opportunities to promote program integration between pandemic response strategies and NTD campaign delivery. Findings identifies key challenges due to disruptions to NTD program delivery and provide strategic recommendations for endemic countries to build resilient programs that can continue to perform during and beyond global pandemics

    Comparison of Different Sampling Methods to Catch Lymphatic Filariasis Vectors in a Sudan Savannah Area of Mali

    Get PDF
    There is a need for better tools to monitor the transmission of lymphatic filariasis and malaria in areas undergoing interventions to interrupt transmission. Therefore, mosquito collection methods other than human landing catch (HLC) are needed. This study aimed to compare the Ifakara tent trap type C (ITTC) and the Biogents sentinel trap (BGST) to the HLC in areas with different vector densities. Mosquitoes were collected in two villages in Mali from July to December in 2011 and 2012. The three methods were implemented at each site with one ITTC, one BGST, and one HLC unit that consisted of one room with two collectors—one indoor and the other outdoor. The Anopheles collected in 2011 were individually dissected, whereas those from 2012 were screened in pools using reverse transcription-polymerase chain reaction (RT-PCR) to determine the maximum infection prevalence likelihood (MIPL) for Wuchereria bancrofti and Plasmodium falciparum. The dissection of the females also allowed to assess the parity rates, as well its results. Over the 2 years, the HLC method collected 1,019 Anopheles, yields that were 34- and 1.5-fold higher than those with the BGST and ITTC, respectively. None of the dissected Anopheles were infected. The RT-PCR results showed comparable MIPL between HLC and ITTC for W. bancrofti with one infected pool from each trap’s yield (respectively 0.03% [0.0009–0.2%] and 0.04% [0.001–0.2%]). For P. falciparum, no infected pool was recovered from BGST. The ITTC is a good alternative to HLC for xenomonitoring of program activities

    Indicators, tests, thresholds and interventions recommended by the World Health Organization[6], [12].

    No full text
    <p>Indicators, tests, thresholds and interventions recommended by the World Health Organization<a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0001380#pntd.0001380-WHO1" target="_blank">[6]</a>, <a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0001380#pntd.0001380-WHO2" target="_blank">[12]</a>.</p

    Eliminating Neglected Tropical Diseases in Urban Areas: A Review of Challenges, Strategies and Research Directions for Successful Mass Drug Administration

    No full text
    Since 1950, the global urban population grew from 746 million to almost 4 billion and is expected to reach 6.4 billion by mid-century. Almost 90% of this increase will take place in Asia and Africa and disproportionately in urban slums. In this context, concerns about the amplification of several neglected tropical diseases (NTDs) are warranted and efforts towards achieving effective mass drug administration (MDA) coverage become even more important. This narrative review considers the published literature on MDA implementation for specific NTDs and in-country experiences under the ENVISION and END in Africa projects to surface features of urban settings that challenge delivery strategies known to work in rural areas. Discussed under the thematics of governance, population heterogeneity, mobility and community trust in MDA, these features include weak public health infrastructure and programs, challenges related to engaging diverse and dynamic populations and the limited accessibility of certain urban settings such as slums. Although the core components of MDA programs for NTDs in urban settings are similar to those in rural areas, their delivery may need adjustment. Effective coverage of MDA in diverse urban populations can be supported by tailored approaches informed by mapping studies, research that identifies context-specific methods to increase MDA coverage and rigorous monitoring and evaluation
    corecore