100 research outputs found

    Solving a Real-Life Distributor's Pallet Loading Problem

    Get PDF
    We consider the distributor's pallet loading problem where a set of different boxes are packed on the smallest number of pallets by satisfying a given set of constraints. In particular, we refer to a real-life environment where each pallet is loaded with a set of layers made of boxes, and both a stability constraint and a compression constraint must be respected. The stability requirement imposes the following: (a) to load at level k+1 a layer with total area (i.e., the sum of the bottom faces' area of the boxes present in the layer) not exceeding α times the area of the layer of level k (where α≥1), and (b) to limit with a given threshold the difference between the highest and the lowest box of a layer. The compression constraint defines the maximum weight that each layer k can sustain; hence, the total weight of the layers loaded over k must not exceed that value. Some stability and compression constraints are considered in other works, but to our knowledge, none are defined as faced in a real-life problem. We present a matheuristic approach which works in two phases. In the first, a number of layers are defined using classical 2D bin packing algorithms, applied to a smart selection of boxes. In the second phase, the layers are packed on the minimum number of pallets by means of a specialized MILP model solved with Gurobi. Computational experiments on real-life instances are used to assess the effectiveness of the algorithm

    Constraint Programming models for the parallel drone scheduling vehicle routing problem

    Full text link
    Drones are currently seen as a viable way for improving the distribution of parcels in urban and rural environments, while working in coordination with traditional vehicles like trucks. In this paper we consider the parallel drone scheduling vehicle routing problem, where the service of a set of customers requiring a delivery is split between a fleet of trucks and a fleet of drones. We consider two variations of the problem. In the first one the problem is more theoretical, and the target is the minimization of the time required to complete the service and have all the vehicles back to the depot. In the second variant more realistic constraints involving operating costs, capacity limitation and workload balance, are considered, and the target is to minimize the total operational costs. We propose several constraint programming models to deal with the two problems. An experimental champaign on the instances previously adopted in the literature is presented to validate the new solving methods. The results show that on top of being a viable way to solve problems to optimality, the models can also be used to derive effective heuristic solutions and high-quality lower bounds for the optimal cost, if the execution is interrupted after its natural end

    Parallel drone scheduling vehicle routing problems with collective drones

    Full text link
    We study last-mile delivery problems where trucks and drones collaborate to deliver goods to final customers. In particular, we focus on problem settings where either a single truck or a fleet with several homogeneous trucks work in parallel to drones, and drones have the capability of collaborating for delivering missions. This cooperative behaviour of the drones, which are able to connect to each other and work together for some delivery tasks, enhance their potential, since connected drone has increased lifting capabilities and can fly at higher speed, overcoming the main limitations of the setting where the drones can only work independently. In this work, we contribute a Constraint Programming model and a valid inequality for the version of the problem with one truck, namely the \emph{Parallel Drone Scheduling Traveling Salesman Problem with Collective Drones} and we introduce for the first time the variant with multiple trucks, called the \emph{Parallel Drone Scheduling Vehicle Routing Problem with Collective Drones}. For the latter variant, we propose two Constraint Programming models and a Mixed Integer Linear Programming model. An extensive experimental campaign leads to state-of-the-art results for the problem with one truck and some understanding of the presented models' behaviour on the version with multiple trucks. Some insights about future research are finally discussed

    Combinatorial Benders’ Cuts for the Strip Packing Problem

    Get PDF
    We study the strip packing problem, in which a set of two-dimensional rectangular items has to be packed in a rectangular strip of fixed width and infinite height, with the aim of minimizing the height used. The problem is important because it models a large number of real-world applications, including cutting operations where stocks of materials such as paper or wood come in large rolls and have to be cut with minimum waste, scheduling problems in which tasks require a contiguous subset of identical resources, and container loading problems arising in the transportation of items that cannot be stacked one over the other. The strip packing problem has been attacked in the literature with several heuristic and exact algorithms, nevertheless, benchmark instances of small size remain unsolved to proven optimality since many years. In this paper we propose a new exact method, that solves a large number of the open benchmark instances within a limited computational effort. Our method is based on a Benders’ decomposition, in which in the master we cut items into unit-width slices and pack them contiguously in the strip, and in the slave we attempt to reconstruct the rectangular items by fixing the vertical positions of their unit-width slices. If the slave proves that the reconstruction of the items is not possible, then a cut is added to the master, and the algorithm is re-iterated. We show that both the master and the slave are strongly NP-hard problems, and solve them with tailored pre-processing, lower and upper bounding techniques, and exact algorithms. We also propose several new techniques to improve the standard Benders’ cuts, using the so-called combinatorial Benders’ cuts, and an additional lifting procedure. Extensive computational tests show that the proposed algorithm provides a substantial breakthrough with respect to previously published algorithms

    Mathematical models and decomposition methods for the multiple knapsack problem

    Get PDF
    We consider the multiple knapsack problem, that calls for the optimal assignment of a set of items, each having a profit and a weight, to a set of knapsacks, each having a maximum capacity. The problem has relevant managerial implications and is known to be very difficult to solve in practice for instances of realistic size. We review the main results from the literature, including a classical mathematical model and a number of improvement techniques. We then present two new pseudo-polynomial formulations, together with specifically tailored decomposition algorithms to tackle the practical difficulty of the problem. Extensive computational experiments show the effectiveness of the proposed approaches

    Precedence-Constrained Arborescences

    Full text link
    The minimum-cost arborescence problem is a well-studied problem in the area of graph theory, with known polynomial-time algorithms for solving it. Previous literature introduced new variations on the original problem with different objective function and/or constraints. Recently, the Precedence-Constrained Minimum-Cost Arborescence problem was proposed, in which precedence constraints are enforced on pairs of vertices. These constraints prevent the formation of directed paths that violate precedence relationships along the tree. We show that this problem is NP-hard, and we introduce a new scalable mixed integer linear programming model for it. With respect to the previous models, the newly proposed model performs substantially better. This work also introduces a new variation on the minimum-cost arborescence problem with precedence constraints. We show that this new variation is also NP-hard, and we propose several mixed integer linear programming models for formulating the problem

    The single-finger keyboard layout problem

    Get PDF
    The problem of designing new keyboards layouts able to improve the typing speed of an average message has been widely considered in the literature of the Ergonomics domain. Empirical tests with users and simple optimization criteria have been used to propose new solutions. On the contrary, very few papers in Operations Research have addressed this optimization problem. In this paper we firstly resume the most relevant problems in keyboard design, enlightening the related Ergonomics aspects. Then we concentrate on keyboards that must be used witha single finger or stylus, like that of Portable Data Assistant, Smartphones and other small devices.We show that the underlying optimization problem is a generalization of the well known Quadratic Assignment Problem (QAP). We recall some of the most effective metaheuristic algorithms for QAP and we propose some non trivial extensions to the keyboard design problem. We compare the new algorithms through computational experiments with instances obtained from word lists of the English, French, Italian and Spanish languages. We provide on the web benchmark instances for each language and the best solutions we obtained
    • …
    corecore