67 research outputs found

    A fast monolithic active pixel sensor with pixel level reset noise suppression and binary outputs for charged particle detection

    Get PDF
    In order to develop precision vertex detectors for the future linear collider, fast active monolithic active pixel sensors are studied. Standard CMOS 0.25 mum digital process is used to design a test chip which includes different pixel types, column-level discriminators and a digital control part. In-pixel amplification is implemented together with double sampling. Different charge-to-voltage conversion factors were obtained using amplifiers with different gains or diode sizes. Pixel architectures with DC and AC coupling to charge sensing element were proposed. As far, hits from conversion of 35Fe photons were registered for the DC-coupled pixel. Double sampling is functional and allows almost a complete cancellation if fixed pattern noise

    SAM: A new GHz sampling ASIC for the H.E.S.S.-II front-end electronics

    Get PDF
    The H.E.S.S.-II front-end electronics, with its 20 GeV energy threshold, will require a much higher acquisition rate capability and a larger dynamic range than was relevant for H.E.S.S.-I. These constraints led to the development of a new ASIC, called SAM for Swift Analogue Memory, to replace the ARS used for H.E.S.S.-I. The SAM chip features 2 channels for the low and high gain outputs of a PMT, each channel having a depth of 256 analogue memory cells. The sampling frequency is adjustable from 0.7 up to 2 GS/s and the read-out time for one event is decreased from 275 down to 2.3 μs. The SAM input bandwidth and dynamic range are increased up to 300 MHz and more than 11 bits, respectively

    A vertex detector for the International Linear Collider based on CMOS sensors

    Get PDF
    The physics programme at the International Linear Collider (ILC) calls for a vertex detector (VD) providing unprecedented flavour tagging performances, especially for c-quarks and τ leptons. This requirement makes a very granular, thin and multi-layer VD installed very close to the interaction region mandatory. Additional constraints, mainly on read-out speed and radiation tolerance, originate from the beam background, which governs the occupancy and the radiation level the detector should be able to cope with. CMOS sensors are being developed to fulfil these requirements. This report addresses the ILC requirements (highly related to beamstrahlung), the main advantages and features of CMOS sensors, the demonstrated performances and the specific aspects of a VD based on this technology. The status of the main R&D directions (radiation tolerance, thinning procedure and read-out speed) are also presented

    A ten thousand frames per second readout MAPS for the EUDET beam telescope

    Get PDF
    Designed and manufactured in a commercial CMOS 0.35 μm OPTO process for equipping the EUDET beam telescope, MIMOSA26 is the first reticule size pixel sensor with digital output and integrated zero suppression. It features a matrix of pixels with 576 rows and 1152 columns, covering an active area of ~224 mm2. A single point resolution of about 4 μm was obtained with a pixel pitch of 18.4 μm. Its architecture allows a fast readout frequency of ~10 k frames/s. The paper describes the chip design, test and major characterisation outcome

    CMOS pixel sensor development: a fast read-out architecture with integrated zero suppression

    Get PDF
    International audienceCMOS Monolithic Active Pixel Sensors (MAPS) have demonstrated their strong potential for tracking devices, particularly for flavour tagging. They are foreseen to equip several vertex detectors and beam telescopes. Most applications require high read-out speed, which imposes sensors to feature digital output with integrated zero suppression. The most recent development of MAPS at IPHC and IRFU addressing this issue will be reviewed. The design architecture, combining pixel array, column-level discriminators and zero suppression circuits, will be presented. Each pixel features a preamplifier and a correlated double sampling (CDS) micro-circuit reducing the temporal and fixed pattern noises. The sensor is fully programmable and can be monitored. It will equip experimental apparatus starting data taking in 2009/2010

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Bandlimited 1/f-noise source

    No full text

    Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    No full text
    International audienceIn the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R&D program has been performed on the design of MAPS in the 0.18 mum CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 mum CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision

    Performance of a Fast Binary Readout CMOS Active Pixel Sensor Chip Designed for Charged Particle Detection

    Get PDF
    We report on the performance of the MIMOSA8 (HiMAPS1) chip. The chip is a 128,times,, times ,32 pixels array where 24 columns have discriminated binary outputs and eight columns analog test outputs. Offset correction techniques are used extensively in this chip to overcome process related mismatches. The array is divided in four blocks of pixels with different conversion factors and is controlled by a serially programmable sequencer. MIMOSA8 is a representative of the CMOS sensors development option considered as a promising candidate for the Vertex Detector of the future International Linear Collider (ILC). The readout technique, implemented on the chip, combines high spatial resolution capabilities with high processing readout speed. Data acquisition, providing control of the chip and signal buffering and linked to a VME system, was made on the eight analog outputs. Analog data, without and with a 55^{55}Fe X-ray source, were acquired and processed using off-line analysis software. From the reconstruction of pixel clusters, built around a central pixel, we deduce that the charge spread is limited to the closest 25 pixels and almost all the available charge is collected. The position of the total charge collection peak (and subsequently the charge-to-voltage conversion factor) stays unaffected when the clock frequency is increased even up to 150 MHz (13.6 mumus readout time per frame). The discriminators, placed in the readout chain, have proved to be fully functional. Beam tests have been made with high energy electrons at DESY (Germany) to study detection efficiency. The results prove that MIMOSA8 is the first and fastest successful monolithic active pixel sensor with on-chip signal discrimination for detection of MIPs
    corecore