41 research outputs found
The Observer Effect: National Security Litigation, Executive Policy Changes, and Judicial Deference
The national security deference debate has reached a stalemate. Those favoring extensive deference to executive branch national security decisions celebrate the limited role courts have played in reviewing those policies. The executive, they contend, is constitutionally charged with such decisions and structurally better suited than the judiciary to make them. Those who bemoan such deference fear for individual rights and an imbalance in the separation of powers. Yet both sides assume that the courts’ role is minimal. Both sides are wrong.
This Article shows why. While courts rarely intervene in national security disputes, the Article demonstrates that they nevertheless play a significant role in shaping executive branch security policies. Call this the “observer effect.” Physics teaches us that observing a particle alters how it behaves. Through psychology, we know that people act differently when they are aware that someone is watching them. In the national security context, the executive is highly sensitive to looming judicial oversight in the national security arena, and establishes or alters policies in an effort to avert direct judicial involvement. By identifying and analyzing the observer effect, this Article provides a more accurate positive account of national security deference, without which reasoned normative judgments cannot be made. This Article makes another contribution to the literature as well. By illustrating how the uncertain, but lurking, threat of judicial decisions spurs increasingly rights–protective policy decisions by the executive, it poses a rejoinder to those who are skeptical that law constrains the executive
CD4+ and CD8+ T cells and antibodies are associated with protection against Delta vaccine breakthrough infection: a nested case-control study within the PITCH study
Serological correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection after vaccination ("vaccine breakthrough") have been described. However, T cell correlates of protection against breakthrough are incompletely defined, especially the specific contributions of CD4+ and CD8+ T cells. Here, 279 volunteers in the Protective Immunity from T Cells in Healthcare Workers (PITCH) UK cohort study were enrolled in a nested case-control study. Cases were those who tested SARS-CoV-2 PCR or lateral flow device (LFD) positive after two vaccine doses during the Delta-predominant era (n = 32), while controls were those who did not report a positive test or undergo anti-nucleocapsid immunoglobulin G (IgG) seroconversion during this period (n = 247). Previous SARS-CoV-2 infection prior to vaccination was associated with reduced odds of vaccine breakthrough. Using samples from 28 d after the second vaccine dose, before all breakthroughs occurred, we observed future cases had lower ancestral spike (S)- and receptor binding domain-specific IgG titers and S1- and S2-specific T cell interferon gamma (IFNγ) responses compared with controls, although these differences did not persist when individuals were stratified according to previous infection status before vaccination. In a subset of matched infection-naïve cases and controls, vaccine breakthrough cases had lower CD4+ and CD8+ IFNγ and tumor necrosis factor (TNF) responses to Delta S peptides compared with controls. For CD8+ responses, this difference appeared to be driven by reduced responses to Delta compared with ancestral peptides among cases; this reduced response to Delta peptides was not observed in controls. Our findings support a protective role for T cells against Delta breakthrough infection. IMPORTANCE Defining correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infection informs vaccine policy for booster doses and future vaccine designs. Existing studies demonstrate humoral correlates of protection, but the role of T cells in protection is still unclear. In this study, we explore antibody and T cell immune responses associated with protection against Delta variant vaccine breakthrough infection in a well-characterized cohort of UK Healthcare Workers (HCWs). We demonstrate evidence to support a role for CD4+ and CD8+ T cells as well as antibodies against Delta vaccine breakthrough infection. In addition, our results suggest a potential role for cross-reactive T cells in vaccine breakthrough
Cross-Sectional Detection of Acute HIV Infection: Timing of Transmission, Inflammation and Antiretroviral Therapy
BACKGROUND: Acute HIV infection (AHI) is a critical phase of infection when irreparable damage to the immune system occurs and subjects are very infectious. We studied subjects with AHI prospectively to develop better treatment and public health interventions. METHODS: Cross-sectional screening was employed to detect HIV RNA positive, antibody negative subjects. Date of HIV acquisition was estimated from clinical history and correlated with sequence diversity assessed by single genome amplification (SGA). Twenty-two cytokines/chemokines were measured from enrollment through week 24. RESULTS: Thirty-seven AHI subjects were studied. In 7 participants with limited exposure windows, the median exposure to HIV occurred 14 days before symptom onset. Lack of viral sequence diversification confirmed the short duration of infection. Transmission dates estimated by SGA/sequencing using molecular clock models correlated with transmission dates estimated by symptom onset in individuals infected with single HIV variants (mean of 28 versus 33 days). Only 10 of 22 cytokines/chemokines were significantly elevated among AHI participants at enrollment compared to uninfected controls, and only 4 participants remained seronegative at enrollment. DISCUSSION: The results emphasize the difficulty in recruiting subjects early in AHI. Viral sequence diversity proved accurate in estimating time of infection. Regardless of aggressive screening, peak viremia and inflammation occurred before enrollment and potential intervention. Given the personal and public health importance, improved AHI detection is urgently needed
Using observational data to emulate a randomized trial of dynamic treatment switching strategies
BACKGROUND: When a clinical treatment fails or shows suboptimal results, the question of when to switch to another treatment arises. Treatment switching strategies are often dynamic because the time of switching depends on the evolution of an individual's time-varying covariates. Dynamic strategies can be directly compared in randomized trials. For example, HIV-infected individuals receiving antiretroviral therapy could be randomized to switching therapy within 90 days of HIV-1 RNA crossing above a threshold of either 400 copies/ml (tight-control strategy) or 1000 copies/ml (loose-control strategy).METHODS: We review an approach to emulate a randomized trial of dynamic switching strategies using observational data from the Antiretroviral Therapy Cohort Collaboration, the Centers for AIDS Research Network of Integrated Clinical Systems and the HIV-CAUSAL Collaboration. We estimated the comparative effect of tight-control vs. loose-control strategies on death and AIDS or death via inverse-probability weighting.RESULTS: Of 43 803 individuals who initiated an eligible antiretroviral therapy regimen in 2002 or later, 2001 met the baseline inclusion criteria for the mortality analysis and 1641 for the AIDS or death analysis. There were 21 deaths and 33 AIDS or death events in the tight-control group, and 28 deaths and 41 AIDS or death events in the loose-control group. Compared with tight control, the adjusted hazard ratios (95% confidence interval) for loose control were 1.10 (0.73, 1.66) for death, and 1.04 (0.86, 1.27) for AIDS or death.CONCLUSIONS: Although our effective sample sizes were small and our estimates imprecise, the described methodological approach can serve as an example for future analyses
Targeted Cytotoxic Therapy Kills Persisting HIV Infected Cells During ART
Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA+ cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies
SARS-CoV-2-specific immune responses and clinical outcomes after COVID-19 vaccination in patients with immune-suppressive disease
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (<380 AU ml−1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies