13 research outputs found

    Genetic Factors Modulate Lead Concentrations In The Organism [fatores Genéticos Que Modulam Concentrações De Chumbo No Organismo]

    No full text
    Lead (Pb) is a highly toxic heavy metal, even at low concentrations. There is no threshold considering "safe" for lead exposure. The toxic effects are due mainly to the enzymatic changes, such as inhibition of the enzyme delta aminolevulinic dehydratase (ALAD) and the ability to compete with calcium. The primary sites for lead absorption are gastrointestinal and respiratory tract. Once absorbed, lead is found in blood, soft tissues and mineralizing systems. Approximately 99% of the total body burden of lead is found in bones, body's major storage site. Around 1% of lead in blood is in plasma, representing the labile and biologically active lead fraction, able to pass the cells membranes and cause toxic effects. Despite the measures taken to reduce the concentrations of metal in nature, some individuals may be more susceptible to adverse effects caused by exposure to lead. Genetic factors has been studied and associated to differences among blood and plasma lead concentrations in subjects exposure. Subjects with different genotypes has proved lower or higher blood concentrations and plasma Pb. Recognize the individual or group of individuals more susceptible to high concentrations of lead can be a useful tool in preventing the toxic effects of metal. The gene coding for ALAD gene and of the Vitamin D Receptor (VDR), which are related to the toxicokinetics of lead have been outbreaks of this review.423331339Crawford, D.C., Akey, D.T., Nickerson, D.A., The patterns of natural variation in human genes (2005) Annu Rev Genomics Hum Genet, 6, pp. 287-312Onalaja, A.O., Claudio, L., Genetic susceptibility to lead poisoning (2000) Environ Health Perspect, 108 (SUPPL. 1), pp. 23-28Rezende, V.B., Barbosa Jr., F., Montenegro, M.F., Sandrim, V.C., Gerlach, R.F., Tanus-Santos, J.E., Haplotypes of vitamin D receptor modulate the circulating levels of lead in exposed subjects (2008) Arch Toxicol, 82, pp. 29-36Montenegro, M.F., Barbosa Jr., F., Sandrim, V.C., Gerlach, R.F., Tanus-Santos, J.E., A polymorphism in the delta-aminolevulinic acid dehydratase gene modifies plasma/whole blood lead ratio (2006) Arch Toxicol, 80, pp. 394-398Weaver, V.M., Lee, B.K., Todd, A.C., Ahn, K.D., Shi, W., Jaar, B.G., Effect modification by delta-aminolevulinic acid dehydratase, vitamin D receptor, and nitric oxide synthase gene polymorphisms on associations between patella lead and renal function in lead workers (2006) Environ Res, 102, pp. 61-69Weaver, V.M., Schwartz, B.S., Ahn, K.D., Stewart, W.F., Kelsey, K.T., Todd, A.C., Associations of renal function with polymorphisms in the delta-aminolevulinic acid dehydratase, vitamin D receptor, and nitric oxide synthase genes in Korean lead workers (2003) Environ Health Perspect, 111, pp. 1613-1619Wetmur, J.G., Influence of the common human deltaaminolevulinate dehydratase polymorphism on lead body burden (1994) Environ Health Perspect, 102 (SUPPL. 3), pp. 215-219Wetmur, J.G., Lehnert, G., Desnick, R.J., The delta-aminolevulinate dehydratase polymorphism: Higher blood lead levels in lead workers and environmentally exposed children with the 1-2 and 2-2 isozymes (1991) Environ Res, 56, pp. 109-119Schwartz, B.S., Stewart, W.F., Kelsey, K.T., Simon, D., Park, S., Links, J.M., Associations of tibial lead levels with BsmI polymorphisms in the vitamin D receptor in former organolead manufacturing workers (2000) Environ Health Perspect, 108, pp. 199-203Goyer, R.A., Lead toxicity: Current concerns (1993) Environ Health Perspect, 100, pp. 177-187(1999) Agency for Toxic Substances and Disease Registry Toxicological profile for lead, pp. 68-196. , ATSDR, U.S. Department of Health and Human Services, Public Health ServiceGilbert, S.G., Weiss, B., A rationale for lowering the blood lead action level from 10 to 2 microg/dL (2006) Neurotoxicology, 27, pp. 693-701Braun, J.M., Kahn, R.S., Froehlich, T., Auinger, P., Lanphear, B.P., Exposures to environmental toxicants and attention deficit hyperactivity disorder in U.S. children (2006) Environ Health Perspect, 114, pp. 1904-1909Bellinger, D., Fau - Leviton, A., Leviton, A., Fau - Waternaux, C., Waternaux, C., Fau - Needleman, H., Needleman, H., Rabinowitz, M., Low-level lead exposure, social class, and infant development (1988) Neurotoxicol Teratol, 10, pp. 497-503Mudipalli, A., Lead hepatotoxicity & potential health effects (2007) Indian J Med Res, 126, pp. 518-527Gidlow, D.A., Lead toxicity (2004) Occup Med (Lond), 54, pp. 76-81Selevan, S.G., Landrigan, P.J., Stern, F.B., Jones, J.H., Mortality of lead smelter workers (1985) Am J Epidemiol, 122, pp. 673-683Selevan, S.G., Landrigan, P.J., Stern, F.B., Jones, J.H., Lead and hypertension in a mortality study of lead smelter workers (1988) Environ Health Perspect, 78, pp. 65-66Rothenberg, S.J., Kondrashov, V., Manalo, M., Jiang, J., Cuellar, R., Garcia, M., Increases in hypertension and blood pressure during pregnancy with increased bone lead levels (2002) Am J Epidemiol, 156, pp. 1079-1087Cooper, W.C., Wong, O., Kheifets, L., Mortality among employees of lead battery plants and lead-producing plants, 1947-1980 (1985) Scand J Work Environ Health, 11, pp. 331-345Patrick, L., Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment (2006) Altern Med Rev, 11, pp. 2-22Kopp, S.J., Barron, J.T., Tow, J.P., Cardiovascular actions of lead and relationship to hypertension: A review (1988) Environ Health Perspect, 78, pp. 91-99Loghman-Adham, M., Renal effects of environmental and occupational lead exposure (1997) Environ Health Perspect, 105, pp. 928-939Aviv, A., John, E., Bernstein, J., Goldsmith, D.I., Spitzer, A., Lead intoxication during development: Its late effects on kidney function and blood pressure (1980) Kidney Int, 17, pp. 430-437Fleischer, N., Mouw, R., Vander, A.J., Chronic effects of lead on renin and renal sodium excretion (1980) J Lab Clin Med, 95, pp. 759-770Schwartz, B.S., Lee, B.K., Stewart, W., Ahn, K.D., Kelsey, K., Bressler, J., Associations of subtypes of hemoglobin with deltaaminolevulinic acid dehydratase genotype and dimercaptosuccinic acid-chelatable lead levels (1997) Arch Environ Health, 52, pp. 97-103Schwartz, B.S., Lee, B.K., Stewart, W., Sithisarankul, P., Strickland, P.T., Ahn, K.D., delta-Aminolevulinic acid dehydratase genotype modifies four hour urinary lead excretion after oral administration of dimercaptosuccinic acid (1997) Occup Environ Med, 54, pp. 241-246Schwartz, B.S., Lee, B.K., Lee, G.S., Stewart, W.F., Simon, D., Kelsey, K., Associations of blood lead, dimercaptosuccinic acidchelatable lead, and tibia lead with polymorphisms in the vitamin D receptor and [delta-aminolevulinic acid dehydratase genes (2000) Environ Health Perspect, 108, pp. 949-954Rabinowitz, M.B., Toxicokinetics of bone lead (1991) Environ Health Perspect, 91, pp. 33-37Bergdahl, I.A., Gerhardsson, L., Liljelind, I.E., Nilsson, L., Skerfving, S., Plasma-lead concentration: Investigations into its usefulness for biological monitoring of occupational lead exposure (2006) Am J Ind Med, 49, pp. 93-101Moreira FR, Moreira JC. [Effects of lead exposure on the human body and health implications. Rev Panam Salud Publica. 2004;15:119-29Berglund, M., Akesson, A., Bjellerup, P., Vahter, M., Metal-bone interactions (2000) Toxicol Lett, pp. 112-113,219-225Silbergeld, E.K., Schwartz, J., Mahaffey, K., Lead and osteoporosis: Mobilization of lead from bone in postmenopausal women (1988) Environ Res, 47, pp. 79-94Silbergeld, E.K., Patrick, T.E., Environmental exposures, toxicologic mechanisms, and adverse pregnancy outcomes (2005) Am J Obstet Gynecol, 192 (SUPPL. 5), pp. S11-S21Astrin, K.H., Bishop, D.F., Wetmur, J.G., Kaul, B., Davidow, B., Desnick, R.J., delta-Aminolevulinic acid dehydratase isozymes and lead toxicity (1987) Ann N Y Acad Sci, 514, pp. 23-29Barbosa Jr., F., Tanus-Santos, J.E., Gerlach, R.F., Parsons, P.J., A critical review of biomarkers used for monitoring human exposure to lead: Advantages, limitations, and future needs (2005) Environ Health Perspect, 113, pp. 1669-1674Wetmur, J.G., Kaya, A.H., Plewinska, M., Desnick, R.J., Molecular characterization of the human delta-aminolevulinate dehydratase 2 (ALAD2) allele: Implications for molecular screening of individuals for genetic susceptibility to lead poisoning (1991) Am J Hum Genet, 49, pp. 757-763Montenegro, M.F., Barbosa Jr., F., Sandrim, V.C., Gerlach, R.F., Tanus-Santos, J.E., Ethnicity affects the distribution of delta-aminolevulinic acid dehydratase (ALAD) genetic variants (2006) Clin Chim Acta, 367, pp. 192-195Ziemsen, B., Angerer, J., Lehnert, G., Benkmann, H.G., Goedde, H.W., Polymorphism of delta-aminolevulinic acid dehydratase in lead-exposed workers (1986) Int Arch Occup Environ Health, 58, pp. 245-247Lee, S.S., Lee, B.K., Lee, G.S., Stewart, W.F., Simon, D., Kelsey, K., Associations of lead biomarkers and delta-aminolevulinic acid dehydratase and vitamin D receptor genotypes with hematopoietic outcomes in Korean lead workers (2001) Scand J Work Environ Health, 27, pp. 402-411Bergdahl, I., Fau - Grubb, A., Grubb, A., Fau - Schutz, A., Schutz, A., Fau - Desnick, R.J., Desnick, R., Fau - Skerfving, S., Lead binding to delta-aminolevulinic acid dehydratase (ALAD) in human (1997) Pharmacol Toxicol, 81, pp. 153-158Fleming, D.E., Chettle, D.R., Wetmur, J.G., Desnick, R.J., Robin, J.P., Boulay, D., Effect of the delta-aminolevulinate dehydratase polymorphism on the accumulation of lead in bone and blood in lead smelter workers (1998) Environ Res, 77, pp. 49-61Montenegro, M.F., Barbosa Jr., F., Sandrim, V.C., Gerlach, R.F., Tanus-Santos, J.E., A polymorphism in the delta-aminolevulinic acid dehydratase gene modifies plasma/whole blood lead ratio (2005) Arch Toxicol. 2006, 80, pp. 394-398. , Epub Dec 9Schwartz, B.S., Lee, B.K., Lee, G.S., Stewart, W.F., Simon, D., Kelsey, K., Associations of blood lead, dimercaptosuccinic acidchelatable lead, and tibia lead with polymorphisms in the vitamin D receptor and [delta-aminolevulinic acid dehydratase genes (2000) Environ Health Perspect, 108, pp. 949-954Bellinger, D., Hu, H., Titlebaum, L., Needleman, H.L., Attentional correlates of dentin and bone lead levels in adolescents (1994) Arch Environ Health, 49, pp. 98-105Lips, P., Vitamin D physiology (2006) Prog Biophys Mol Biol. 2006, 92, pp. 4-8. , Epub Feb 28Wasserman, R.H., Fullmer, C.S., Vitamin D and intestinal calcium transport: Facts, speculations and hypotheses (1995) J Nutr, 125 (SUPPL. 7), pp. 1971S-1979SSix, K.M., Goyer, R.A., Experimental enhancement of lead toxicity by low dietary calcium (1970) J Lab Clin Med, 76, pp. 933-942Mykkanen, H.M., Wasserman, R.H., Gastrointestinal absorption of lead (203Pb) in chicks: Influence of lead, calcium, and age (1981) J Nutr, 111, pp. 1757-1765Fullmer, C.S., Dietary calcium levels and treatment interval determine the effects of lead ingestion on plasma 1,25-dihydroxyvitamin D concentration in chicks (1995) J Nutr, 125, pp. 1328-1333Holick, M.F., Vitamin D deficiency (2007) N Engl J Med, 357, pp. 266-281McDonnell, D.P., Mangelsdorf, D.J., Pike, J.W., Haussler, M.R., O'Malley, B.W., Molecular cloning of complementary DNA encoding the avian receptor for vitamin D (1987) Science, 235, pp. 1214-1217Morrison, N.A., Qi, J.C., Tokita, A., Kelly, P.J., Crofts, L., Nguyen, T.V., Prediction of bone density from vitamin D receptor alleles (1994) Nature, 367, pp. 284-287Uitterlinden, A.G., Fang, Y., Van Meurs, J.B., Pols, H.A., Van Leeuwen, J.P., Genetics and biology of vitamin D receptor polymorphisms (2004) Gene, 338, pp. 143-156Miyamoto, K., Kesterson, R.A., Yamamoto, H., Taketani, Y., Nishiwaki, E., Tatsumi, S., Structural organization of the human vitamin D receptor chromosomal gene and its promoter (1997) Mol Endocrinol, 11, pp. 1165-1179Crofts, L.A., Hancock, M.S., Morrison, N.A., Eisman, J.A., Multiple promoters direct the tissue-specific expression of novel Nterminal variant human vitamin D receptor gene transcripts (1998) Proc Natl Acad Sci U S A, 95, pp. 10529-10534Uitterlinden, A.G., Fang, Y., Van Meurs, J.B., Pols, H.A., Van Leeuwen, J.P., Genetics and biology of vitamin D receptor polymorphisms (2004) Gene, 338, pp. 143-156Cooper, G.S., Umbach, D.M., Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis (1996) J Bone Miner Res, 11, pp. 1841-1849Need, A.G., Horowitz, M., Stiliano, A., Scopacasa, F., Morris, H.A., Chatterton, B.E., Vitamin D receptor genotypes are related to bone size and bone density in men (1996) Eur J Clin Invest, 26, pp. 793-796Haynes, E.N., Kalkwarf, H.J., Hornung, R., Wenstrup, R., Dietrich, K., Lanphear, B.P., Vitamin D receptor Fok1 polymorphism and blood lead concentration in children (2003) Environ Health Perspect, 111, pp. 1665-1669Crawford, D.C., Nickerson, D.A., Definition and clinical importance of haplotypes (2005) Annu Rev Med, 56, pp. 303-320Montpetit A, Chagnon F. [The Haplotype Map of the human genome: a revolution in the genetics of complex diseases. Med Sci (Paris). 2006;22:1061-

    Efeitos de águas residuárias de café no crescimento vegetativo de cafeeiros em seu primeiro ano Effects of processing coffee wastewater on first year coffee plants growth

    Get PDF
    Ao utilizar o solo como forma de tratamento e de disposição final de águas residuárias de café (ARC) e essa como fonte de água e de nutrientes para os cafeeiros, solucionam-se problemas ambientais e diminuem-se os custos de produção para o cafeicultor. Este trabalho teve por objetivo avaliar os efeitos de diferentes doses de potássio aplicadas via ARC no crescimento vegetativo de cafeeiros (Coffea arabica L.), Catuaí' e Catucaí', em seu primeiro ano, bem como o incremento de potássio e a condutividade elétrica na solução do solo. O estudo foi desenvolvido em casa de vegetação do Departamento de Engenharia, na Universidade Federal de Lavras, no município de Lavras - MG. Os tratamentos foram definidos por diferentes doses de potássio (K+): 30 mg L-1; 65 mg L-1; 100 mg L-1; 135 mg L-1, aplicadas via ARC, e pela testemunha (água de irrigação e adubação convencional). ARC com concentrações até 135 mg L-1 de potássio contribui para o crescimento vegetativo do cafeeiro, especificamente, altura de planta e diâmetro do ramo ortotrópico, mostrando-se igualmente, ou melhor, que a água de irrigação e potássio por meio da adubação convencional. Além disso, o aumento na concentração de potássio do solo em todos os tratamentos não foi suficiente para aumentar a condutividade elétrica em níveis que possam afetar o crescimento da planta, no período avaliado.<br>Using the soil as a form of treatment and final disposal for coffee wastewater(CW), considering its water and nutrient content to the coffee, solves environmental problems and reduces production costs for coffee growers. This research had the objective to evaluate the influence of different potassium levels from WC on the growth of (Coffea arabica L.), Catuaí' and Catucaí' coffee varieties, in their fist year, as well the potassium increase and electrical conductivity in the soil solution. The experiment was carried out in a greenhouse of the Engineering Department, of Universidade Federal de Lavras, in Lavras - MG, Brazil. The treatment levels were defined as: 30 mg L-1; 65 mg L-1; 100 mg L-1; 135 mg L-1 of potassium (K+), applied through CW and the control (irrigation water and conventional fertilization). Coffee processing wastewater with concentration up to 135 mg L-1 of potassium contributes to coffee growth, specifically, plant height and shoot diameter, showing to be equal or even better than irrigation water and potassium via conventional fertilizers. In addition, during the period evaluated the increase in soil potassium concentration was not enough to increase electrical conductivity to levels that could affect plant growth

    Etiologia e estratégias de controle de viroses do mamoeiro no brasil

    No full text
    corecore