225 research outputs found

    Description-driven Adaptation of Media Resources

    Get PDF
    The current multimedia landscape is characterized by a significant diversity in terms of available media formats, network technologies, and device properties. This heterogeneity has resulted in a number of new challenges, such as providing universal access to multimedia content. A solution for this diversity is the use of scalable bit streams, as well as the deployment of a complementary system that is capable of adapting scalable bit streams to the constraints imposed by a particular usage environment (e.g., the limited screen resolution of a mobile device). This dissertation investigates the use of an XML-driven (Extensible Markup Language) framework for the format-independent adaptation of scalable bit streams. Using this approach, the structure of a bit stream is first translated into an XML description. In a next step, the resulting XML description is transformed to reflect a desired adaptation of the bit stream. Finally, the transformed XML description is used to create an adapted bit stream that is suited for playback in the targeted usage environment. The main contribution of this dissertation is BFlavor, a new tool for exposing the syntax of binary media resources as an XML description. Its development was inspired by two other technologies, i.e. MPEG-21 BSDL (Bitstream Syntax Description Language) and XFlavor (Formal Language for Audio-Visual Object Representation, extended with XML features). Although created from a different point of view, both languages offer solutions for translating the syntax of a media resource into an XML representation for further processing. BFlavor (BSDL+XFlavor) harmonizes the two technologies by combining their strengths and eliminating their weaknesses. The expressive power and performance of a BFlavor-based content adaptation chain, compared to tool chains entirely based on either BSDL or XFlavor, were investigated by several experiments. One series of experiments targeted the exploitation of multi-layered temporal scalability in H.264/AVC, paying particular attention to the use of sub-sequences and hierarchical coding patterns, as well as to the use of metadata messages to communicate the bit stream structure to the adaptation logic. BFlavor was the only tool to offer an elegant and practical solution for XML-driven adaptation of H.264/AVC bit streams in the temporal domain

    Not all adversarial examples require a complex defense : identifying over-optimized adversarial examples with IQR-based logit thresholding

    Get PDF
    Detecting adversarial examples currently stands as one of the biggest challenges in the field of deep learning. Adversarial attacks, which produce adversarial examples, increase the prediction likelihood of a target class for a particular data point. During this process, the adversarial example can be further optimized, even when it has already been wrongly classified with 100% confidence, thus making the adversarial example even more difficult to detect. For this kind of adversarial examples, which we refer to as over-optimized adversarial examples, we discovered that the logits of the model provide solid clues on whether the data point at hand is adversarial or genuine. In this context, we first discuss the masking effect of the softmax function for the prediction made and explain why the logits of the model are more useful in detecting over-optimized adversarial examples. To identify this type of adversarial examples in practice, we propose a non-parametric and computationally efficient method which relies on interquartile range, with this method becoming more effective as the image resolution increases. We support our observations throughout the paper with detailed experiments for different datasets (MNIST, CIFAR-10, and ImageNet) and several architectures

    GPU-driven recombination and transformation of YCoCg-R video samples

    Get PDF
    Common programmable Graphics Processing Units (GPU) are capable of more than just rendering real-time effects for games. They can also be used for image processing and the acceleration of video decoding. This paper describes an extended implementation of the H.264/AVC YCoCg-R to RGB color space transformation on the GPU. Both the color space transformation and recombination of the color samples from a nontrivial data layout are performed by the GPU. Using mid- to high-range GPUs, this extended implementation offers a significant gain in processing speed compared to an existing basic GPU version and an optimized CPU implementation. An ATI X1900 GPU was capable of processing more than 73 high-resolution 1080p YCoCg-R frames per second, which is over twice the speed of the CPU-only transformation using a Pentium D 820

    Dual Rectified Linear Units (DReLUs): A Replacement for Tanh Activation Functions in Quasi-Recurrent Neural Networks

    Full text link
    In this paper, we introduce a novel type of Rectified Linear Unit (ReLU), called a Dual Rectified Linear Unit (DReLU). A DReLU, which comes with an unbounded positive and negative image, can be used as a drop-in replacement for a tanh activation function in the recurrent step of Quasi-Recurrent Neural Networks (QRNNs) (Bradbury et al. (2017)). Similar to ReLUs, DReLUs are less prone to the vanishing gradient problem, they are noise robust, and they induce sparse activations. We independently reproduce the QRNN experiments of Bradbury et al. (2017) and compare our DReLU-based QRNNs with the original tanh-based QRNNs and Long Short-Term Memory networks (LSTMs) on sentiment classification and word-level language modeling. Additionally, we evaluate on character-level language modeling, showing that we are able to stack up to eight QRNN layers with DReLUs, thus making it possible to improve the current state-of-the-art in character-level language modeling over shallow architectures based on LSTMs

    On the application of reservoir computing networks for noisy image recognition

    Get PDF
    Reservoir Computing Networks (RCNs) are a special type of single layer recurrent neural networks, in which the input and the recurrent connections are randomly generated and only the output weights are trained. Besides the ability to process temporal information, the key points of RCN are easy training and robustness against noise. Recently, we introduced a simple strategy to tune the parameters of RCNs. Evaluation in the domain of noise robust speech recognition proved that this method was effective. The aim of this work is to extend that study to the field of image processing, by showing that the proposed parameter tuning procedure is equally valid in the field of image processing and conforming that RCNs are apt at temporal modeling and are robust with respect to noise. In particular, we investigate the potential of RCNs in achieving competitive performance on the well-known MNIST dataset by following the aforementioned parameter optimizing strategy. Moreover, we achieve good noise robust recognition by utilizing such a network to denoise images and supplying them to a recognizer that is solely trained on clean images. The experiments demonstrate that the proposed RCN-based handwritten digit recognizer achieves an error rate of 0.81 percent on the clean test data of the MNIST benchmark and that the proposed RCN-based denoiser can effectively reduce the error rate on the various types of noise. (c) 2017 Elsevier B.V. All rights reserved

    Investigating the biological relevance in trained embedding representations of protein sequences

    Get PDF
    As genome sequencing is becoming faster and cheaper, an abundance of DNA and protein sequence data is available. However, experimental annotation of structural or functional information develops at a much slower pace. Therefore, machine learning techniques have been widely adopted to make accurate predictions on unseen sequence data. In recent years, deep learning has been gaining popularity, as it allows for effective end-to-end learning. One consideration for its application on sequence data is the choice for a suitable and effective sequence representation strategy. In this paper, we investigate the significance of three common encoding schemes on the multi-label prediction problem of Gene Ontology (GO) term annotation, namely a one-hot encoding, an ad-hoc trainable embedding, and pre-trained protein vectors, using different hyper-parameters. We found that traditional unigram one-hot encodings achieved very good results, only slightly outperformed by unigram ad-hoc trainable embeddings and bigram pre-trained embeddings (by at most 3%for the F maxscore), suggesting the exploration of different encoding strategies to be potentially beneficial. Most interestingly, when analyzing and visualizing the trained embeddings, we found that biologically relevant (dis)similarities between amino acid n-grams were implicitly learned, which were consistent with their physiochemical properties

    Improving language modeling using densely connected recurrent neural networks

    Get PDF
    In this paper, we introduce the novel concept of densely connected layers into recurrent neural networks. We evaluate our proposed architecture on the Penn Treebank language modeling task. We show that we can obtain similar perplexity scores with six times fewer parameters compared to a standard stacked 2-layer LSTM model trained with dropout (Zaremba et al. 2014). In contrast with the current usage of skip connections, we show that densely connecting only a few stacked layers with skip connections already yields significant perplexity reductions.Comment: Accepted at Workshop on Representation Learning, ACL201
    • …
    corecore