134 research outputs found

    A collaborative and evolving response to the needs of frontline workers, patients and families during the COVID-19 pandemic at Tygerberg Hospital, Western Cape Province, South Africa

    Get PDF
    The global devastation caused by the COVID-19 pandemic and its mental health impact is undeniable. The physical and psychological consequences are wide-ranging – affecting patients fighting the disease, frontline workers in the trenches with them, healthcare staff deployed in high-care settings, and families disconnected from their loved ones in their darkest hours. Within 6 weeks of the COVID-19 outbreak in South Africa, the Department of Psychiatry at Stellenbosch University established the TBH/SU COVID Resiliency Clinic to provide psychological support to frontline workers at Tygerberg Hospital. Identified barriers in healthcare workers accessing mental healthcare resulted in moving towards an on-site visibility to try to remove some of these barriers. This greater on-site presence enabled networking and building of relationships with frontline staff that over time highlighted other frontline needs, such as providing psychosocial and spiritual support to patients and their families. We share challenges, lessons learned and recommendations from two initiatives: the TBH/SU COVID-19 Resiliency Clinic, and an embedded COVID Care Team (CCT). We describe the establishment, roll-out and progress of the Clinic and the subsequent CCT

    Thermal and electrical conductivity of iron at Earth's core conditions

    Get PDF
    The Earth acts as a gigantic heat engine driven by decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes, and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing to grow the solid inner core, and on chemical convection due to light elements expelled from the liquid on freezing. The power supplied to the geodynamo, measured by the heat-flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat-flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent difficulties in experimentation and theory. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles- the first directly computed values that do not rely on estimates based on extrapolations. The mixtures of Fe, O, S, and Si are taken from earlier work and fit the seismologically-determined core density and inner-core boundary density jump. We find both conductivities to be 2-3 times higher than estimates in current use. The changes are so large that core thermal histories and power requirements must be reassessed. New estimates of adiabatic heat-flux give 15-16 TW at the CMB, higher than present estimates of CMB heat-flux based on mantle convection; the top of the core must be thermally stratified and any convection in the upper core driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted and future models of mantle evolution must incorporate a high CMB heat-flux and explain recent formation of the inner core.Comment: 11 pages including supplementary information, two figures. Scheduled to appear in Nature, April 201

    Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation

    Get PDF
    The Earth’s inner core grows by the freezing of liquid iron at its surface. The point in history at which this process initiated marks a step-change in the thermal evolution of the planet. Recent computational and experimental studies1,2,3,4,5 have presented radically differing estimates of the thermal conductivity of the Earth’s core, resulting in estimates of the timing of inner-core nucleation ranging from less than half a billion to nearly two billion years ago. Recent inner-core nucleation (high thermal conductivity) requires high outer-core temperatures in the early Earth that complicate models of thermal evolution. The nucleation of the core leads to a different convective regime6 and potentially different magnetic field structures that produce an observable signal in the palaeomagnetic record and allow the date of inner-core nucleation to be estimated directly. Previous studies searching for this signature have been hampered by the paucity of palaeomagnetic intensity measurements, by the lack of an effective means of assessing their reliability, and by shorter-timescale geomagnetic variations. Here we examine results from an expanded Precambrian database of palaeomagnetic intensity measurements7 selected using a new set of reliability criteria8. Our analysis provides intensity-based support for the dominant dipolarity of the time-averaged Precambrian field, a crucial requirement for palaeomagnetic reconstructions of continents. We also present firm evidence for the existence of very long-term variations in geomagnetic strength. The most prominent and robust transition in the record is an increase in both average field strength and variability that is observed to occur between a billion and 1.5 billion years ago. This observation is most readily explained by the nucleation of the inner core occurring during this interval9; the timing would tend to favour a modest value of core thermal conductivity and supports a simple thermal evolution model for the Earth

    Hybrid inorganic-organic capsules for efficient intracellular delivery of novel siRNAs against influenza A (H1N1) virus infection

    Get PDF
    This work was supported by ARUK project grant 21210 ‘Sustained and Controllable Local Delivery of Anti-inflammatory Therapeutics with Nanoengineered Microcapsules’. The work was also supported in part by Russian Foundation of Basic Research grants No. 16-33-50153 mol_nr, No. 16-33-00966 mol_a, Russian Science Foundation grant No. 15-15-00170 and Russian Governmental Program ‘‘Nauka’’, No. 1.1658.2016, 4002

    Layer-by-Layer Nanoparticles for Systemic Codelivery of an Anticancer Drug and siRNA for Potential Triple-Negative Breast Cancer Treatment

    Get PDF
    A single nanoparticle platform has been developed through the modular and controlled layer-by-layer process to codeliver siRNA that knocks down a drug-resistance pathway in tumor cells and a chemotherapy drug to challenge a highly aggressive form of triple-negative breast cancer. Layer-by-layer films were formed on nanoparticles by alternately depositing siRNA and poly-l-arginine; a single bilayer on the nanoparticle surface could effectively load up to 3500 siRNA molecules, and the resulting LbL nanoparticles exhibit an extended serum half-life of 28 h. In animal models, one dose via intravenous administration significantly reduced the target gene expression in the tumors by almost 80%. By generating the siRNA-loaded film atop a doxorubicin-loaded liposome, we identified an effective combination therapy with siRNA targeting multidrug resistance protein 1, which significantly enhanced doxorubicin efficacy by 4 fold in vitro and led to up to an 8-fold decrease in tumor volume compared to the control treatments with no observed toxicity. The results indicate that the use of layer-by-layer films to modify a simple liposomal doxorubicin delivery construct with a synergistic siRNA can lead to significant tumor reduction in the cancers that are otherwise nonresponsive to treatment with Doxil or other common chemotherapy drugs. This approach provides a potential strategy to treat aggressive and resistant cancers, and a modular platform for a broad range of controlled multidrug therapies customizable to the cancer type in a singular nanoparticle delivery system.Janssen Pharmaceutical Ltd. (TRANSCEND Grant)National Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051)National Health and Medical Research Council (Australia) (CJ Martin Fellowship)National Science Foundation (U.S.). Graduate Research FellowshipNatural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship

    Direct measurement of thermal conductivity in solid iron at planetary core conditions

    Get PDF
    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth’s core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth’s magnetic field via dynamo action1, 2, 3. Attempts to describe thermal transport in Earth’s core have been problematic, with predictions of high thermal conductivity4, 5, 6, 7 at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record8, 9, 10. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell11, 12. Our measurements place the thermal conductivity of Earth’s core near the low end of previous estimates, at 18–44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements10 indicating that Earth’s geodynamo has persisted since the beginning of Earth’s history, and allows for a solid inner core as old as the dynamo

    Review of mathematical programming applications in water resource management under uncertainty

    Get PDF
    corecore