12 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Joint-Specific Power-Pedaling Rate Relationships During Maximal Cycling

    No full text
    Previous authors have reported power-pedaling rate relationships for maximal cycling. However, the joint-specific power-pedaling rate relationships that contribute to pedal power have not been reported. We determined absolute and relative contributions of joint-specific powers to pedal power across a range of pedaling rates during maximal cycling. Ten cyclists performed maximal 3 s cycling trials at 60, 90, 120, 150, and 180 rpm. Joint-specific powers were averaged over complete pedal cycles, and extension and flexion actions. Effects of pedaling rate on relative joint-specific power, velocity, and excursion were assessed with regression analyses and repeated-measures ANOVA. Relative ankle plantar flexion power (25 to 8%; P = .01; R2= .90) decreased with increasing pedaling rate, whereas relative hip extension power (41 to 59%; P 2= .92) and knee flexion power (34 to 49%; P 2= .94) increased with increasing pedaling rate. Knee extension powers did not differ across pedaling rates. Ankle joint angular excursion decreased with increasing pedaling rate (48 to 20 deg) whereas hip joint excursion increased (42 to 48 deg). These results demonstrate that the often-reported quadratic power-pedaling rate relationship arises from combined effects of dissimilar joint-specific power-pedaling rate relationships. These dissimilar relationships are likely influenced by musculoskeletal constraints (ie, muscle architecture, morphology) and/or motor control strategies.</p

    Local Temperature Changes and Human Skeletal Muscle Metabolism.

    No full text

    Inter-individual variability in adaptation of the leg muscles following a standardised endurance training programme in young women.

    No full text
    There is considerable inter-individual variability in adaptations to endurance training. We hypothesised that those individuals with a low local leg-muscle peak aerobic capacity (VO2peak) relative to their whole-body maximal aerobic capacity (VO2max) would experience greater muscle training adaptations compared to those with a relatively high VO2peak. 53 untrained young women completed one-leg cycling to measure VO2peak and two-leg cycling to measure VO2max. The one-leg VO2peak was expressed as a ratio of the two-leg VO2max (Ratio(1:2)). Magnetic resonance imaging was used to indicate quadriceps muscle volume. Measurements were taken before and after completion of 6 weeks of supervised endurance training. There was large inter-individual variability in the pre-training Ratio(1:2) and large variability in the magnitude of training adaptations. The pre-training Ratio(1:2) was not related to training-induced changes in VO2max (P = 0.441) but was inversely correlated with changes in one-leg VO2peak and muscle volume (P < 0.05). No relationship was found between the training-induced changes in two-leg VO2max and one-leg VO2peak (r = 0.21; P = 0.129). It is concluded that the local leg-muscle aerobic capacity and Ratio(1:2) vary from person to person and this influences the extent of muscle adaptations following standardised endurance training. These results help to explain why muscle adaptations vary between people and suggest that setting the training stimulus at a fixed percentage of VO2max might not be a good way to standardise the training stimulus to the leg muscles of different people
    corecore