978 research outputs found
Foundational Checklist of the Amphibians of Wise County, Virginia
The Appalachian Mountains are arguably home to the highest degree of amphibian diversity in the world, particularly caudate (salamander) biodiversity. Despite the high degree of amphibian endemism in the Appalachians, several regions remain unsurveyed for amphibian species. In addition to this knowledge gap, we are in the midst of alarming amphibian biodiversity loss. Thus, it is of the utmost importance to bridge this knowledge gap by conducting surveys before some of these amphibian species are lost. We surveyed Wise County (previously unsurveyed county in the Appalachian Mountains with no records existing in the primary literature) over two years to assess amphibian species presence. We found 23 different species of amphibians (eight species of frogs and toads; 15 species of salamanders). In addition, we report five new amphibian species occurrences previously unreported in the primary literature within Wise County. However, not all amphibian species expected to occur in Wise County were observed. The primary suspected reason for their lack of occurrence involves habitat loss and/or modification, since the region is heavily exploited for coal and lumber. Overall, our study provides invaluable data in current times of amphibian biodiversity concern as they clarify and expand our knowledge of known amphibian species within the area. Using our work as a foundation, future surveying could assess whether amphibian biodiversity of Wise County are experiencing growth, stability, or decline
Experiment and modelling of birefringent flows using commercial CFD code
It is well-known that certain fluids are birefringent and when flows are viewed in polarised light interference fringes are observed. The fringes are caused by a phase shift in the light passing through the fluid and are proportional to the integral of the maximum shear strains in the fluid. In order to understand what is happening within the three dimensional flow and overcome the difficulties due to this integration, additional computational or experimental information is needed. In this work, a commercially available computer code (Fluent) is used for the first time to model the flows. The flow data are then exported to a spreadsheet where the shear rates are integrated across the field and then banded for graphical output. The results from this are then compared to results generated from birefringent flow experiments and the agreement is found to be good since the modelled fringes show the same patterns as those in the experiment. This novel use of computational and experimental techniques together will allow quantitative analysis of three-dimensional flows in the future. Currently, there are still a lot of empirical variables involved in fitting the computational fringes to the experiment, but the results of this preliminary study show that this is a promising approach to this type of problem
Public sector reforms, privatisation and regimes of control in a Chinese enterprise
The Chinese economic reform has recently become a major focus of attention around the world. The underlying rationale for the Chinese government's privatisation and public sector reforms is the view that reformed state enterprises and privately managed firms will demonstrate superior management control and better performance, and hence encourage economic growth and employment. There are very few intensive case studies published in English journals studying whether firms privatised in China have reversed previous losses and introduced better management controls, leading to increased investment, productivity, and overall organizational effectiveness and efficiency. The researchers do not seek to deny the control problems of Chinese SOEs, but question the consequences of the new controls installed during the post-privatisation period. The paper also reveals a declining tendency in employment; altered distributions of wealth ? especially to the state ? and labour, and a lack of improvements in the accountability of privatised companies. Overall, the paper argues, the aims of reform policies in China, including better control, increased profitability and an improved working life for Chinese people, have not materialized. The paper calls for more research on the above issues in the Chinese context
Multipole Amplitudes of Pion Photoproduction on Nucleons up to 2GeV within Dispersion Relations and Unitary Isobar Model
Two approaches for analysis of pion photo- and electroproduction on nucleons
in the resonance energy region are checked at using the results of
GWU(VPI) partial-wave analysis of photoproduction data. The approaches are
based on dispersion relations and unitary isobar model. Within dispersion
relations good description of photoproduction multipoles is obtained up to
. Within unitary isobar model, modified with increasing energy by
incorporation of Regge poles, and with unified Breit-Wigner parametrization of
resonance contributions, good description of photoproduction multipoles is
obtained up to .Comment: 23 pages, LaTe
Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms
We present a novel method for reducing the inhomogeneous frequency broadening
in the hyperfine splitting of the ground state of optically trapped atoms. This
reduction is achieved by the addition of a weak light field, spatially
mode-matched with the trapping field and whose frequency is tuned in-between
the two hyperfine levels. We experimentally demonstrate the new scheme with Rb
85 atoms, and report a 50-fold narrowing of the rf spectrum
Buried treasure—marine turtles do not ‘disguise’ or ‘camouflage’ their nests but avoid them and create a decoy trail
After laying their eggs and refilling the egg chamber, sea turtles scatter sand extensively around the nest site. This is presumed to camouflage the nest, or optimize local conditions for egg development, but a consensus on its function is lacking. We quantified activity and mapped the movements of hawksbill (Eretmochelys imbricata) and leatherback (Dermochelys coriacea) turtles during sand-scattering. For leatherbacks, we also recorded activity at each sand-scattering position. For hawksbills, we recorded breathing rates during nesting as an indicator of metabolic investment and compared with published values for leatherbacks. Temporal and inferred metabolic investment in sand-scattering was substantial for both species. Neither species remained near the nest while sand-scattering, instead moving to several other positions to scatter sand, changing direction each time, progressively displacing themselves from the nest site. Movement patterns were highly diverse between individuals, but activity at each sand-scattering position changed little between completion of egg chamber refilling and return to the sea. Our findings are inconsistent with sand-scattering being to directly camouflage the nest, or primarily for modifying the nest-proximal environment. Instead, they are consistent with the construction of a series of dispersed decoy nests that may reduce the discovery of nests by predators
Non-stationary Rayleigh-Taylor instability in supernovae ejecta
The Rayleigh-Taylor instability plays an important role in the dynamics of
several astronomical objects, in particular, in supernovae (SN) evolution. In
this paper we develop an analytical approach to study the stability analysis of
spherical expansion of the SN ejecta by using a special transformation in the
co-moving coordinate frame. We first study a non-stationary spherical expansion
of a gas shell under the pressure of a central source. Then we analyze its
stability with respect to a no radial, non spherically symmetric perturbation
of the of the shell. We consider the case where the polytropic constant of the
SN shell is and we examine the evolution of a arbitrary shell
perturbation. The dispersion relation is derived. The growth rate of the
perturbation is found and its temporal and spatial evolution is discussed. The
stability domain depends on the ejecta shell thickness, its acceleration, and
the perturbation wavelength.Comment: 16 page
Weak-Localization in Chaotic Versus Non-Chaotic Cavities: A Striking Difference in the Line Shape
We report experimental evidence that chaotic and non-chaotic scattering
through ballistic cavities display distinct signatures in quantum transport. In
the case of non-chaotic cavities, we observe a linear decrease in the average
resistance with magnetic field which contrasts markedly with a Lorentzian
behavior for a chaotic cavity. This difference in line-shape of the
weak-localization peak is related to the differing distribution of areas
enclosed by electron trajectories. In addition, periodic oscillations are
observed which are probably associated with the Aharonov-Bohm effect through a
periodic orbit within the cavities.Comment: 4 pages revtex + 4 figures on request; amc.hub.94.
An inverse approach to Einstein's equations for non-conducting fluids
We show that a flow (timelike congruence) in any type warped product
spacetime is uniquely and algorithmically determined by the condition of zero
flux. (Though restricted, these spaces include many cases of interest.) The
flow is written out explicitly for canonical representations of the spacetimes.
With the flow determined, we explore an inverse approach to Einstein's
equations where a phenomenological fluid interpretation of a spacetime follows
directly from the metric irrespective of the choice of coordinates. This
approach is pursued for fluids with anisotropic pressure and shear viscosity.
In certain degenerate cases this interpretation is shown to be generically not
unique. The framework developed allows the study of exact solutions in any
frame without transformations. We provide a number of examples, in various
coordinates, including spacetimes with and without unique interpretations. The
results and algorithmic procedure developed are implemented as a computer
algebra program called GRSource.Comment: 9 pages revtex4. Final form to appear in Phys Rev
Non-linear doublon production in a Mott insulator --- Landau-Dykhne method applied to an integrable model
Doublon-hole pair production which takes place during dielectric breakdown in
a Mott insulator subject to a strong laser or a static electric field is
studied in the one-dimensional Hubbard model. Two nonlinear effects cause the
excitation, i.e., multi-photon absorption and quantum tunneling. Keldysh
crossover between the two mechanisms occurs as the field strength and photon
energy is changed. The calculation is done analytically by the Landau-Dykhne
method in combination with the Bethe ansatz solution and the results are
compared with those of the time dependent density matrix renormalization group.
Using this method, we calculate distribution function of the generated
doublon-hole pairs and show that it drastically changes as we cross the Keldysh
crossover line. After calculating the tunneling threshold for several
representative one-dimensional Mott insulators, possible experimental tests of
the theory is proposed such as angle resolved photoemission spectroscopy of the
upper Hubbard band in the quantum tunneling regime. We also discuss the
relation of the present theory with a many-body extension of electron-positron
pair production in nonlinear quantum electrodynamics known as the Schwinger
mechanism.Comment: 15 page
- …