186 research outputs found

    Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Get PDF
    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as well

    Effects of mavoglurant on visual attention and pupil reactivity while viewing photographs of faces in Fragile X Syndrome.

    Get PDF
    BackgroundNumerous preclinical studies have supported the theory that enhanced activation of mGluR5 signaling, due to the absence or reduction of the FMR1 protein, contributes to cognitive and behavioral deficits in patients with fragile X syndrome (FXS). However multiple phase 2 controlled trials in patients with FXS have failed to demonstrate efficacy of compounds that negatively modulate mGluR5, including two phase 2b randomized controlled trials (RCT) of mavoglurant (AFQ056, Novartis Pharma AG), when the primary measures of interest were behavioral ratings. This has cast some doubt onto the translation of the mGluR5 theory from animal models to humans with the disorder.MethodsWe evaluated social gaze behavior-a key phenotypic feature of the disorder-and sympathetic nervous system influence on pupil size using a previously-validated eye tracking paradigm as a biobehavioral probe, in 57 adolescent or adult patients with FXS at baseline and following three months of blinded treatment with one of three doses of mavoglurant or placebo, within the context of the AFQ056 RCTs.ResultsPatients with FXS treated with mavoglurant demonstrated increased total absolute looking time and number of fixations to the eye region while viewing human faces relative to baseline, and compared to those treated with placebo. In addition, patients had greater pupil reactivity to faces relative to baseline following mavoglurant treatment compared to placebo.DiscussionThe study shows that negative modulation of mGluR5 activity improves eye gaze behavior and alters sympathetically-driven reactivity to faces in patients with FXS, providing preliminary evidence of this drug's impact on behavior in humans with the disorder

    Improving IQ measurement in intellectual disabilities using true deviation from population norms

    Get PDF
    BackgroundIntellectual disability (ID) is characterized by global cognitive deficits, yet the very IQ tests used to assess ID have limited range and precision in this population, especially for more impaired individuals.MethodsWe describe the development and validation of a method of raw z-score transformation (based on general population norms) that ameliorates floor effects and improves the precision of IQ measurement in ID using the Stanford Binet 5 (SB5) in fragile X syndrome (FXS; n = 106), the leading inherited cause of ID, and in individuals with idiopathic autism spectrum disorder (ASD; n = 205). We compared the distributional characteristics and Q-Q plots from the standardized scores with the deviation z-scores. Additionally, we examined the relationship between both scoring methods and multiple criterion measures.ResultsWe found evidence that substantial and meaningful variation in cognitive ability on standardized IQ tests among individuals with ID is lost when converting raw scores to standardized scaled, index and IQ scores. Use of the deviation z- score method rectifies this problem, and accounts for significant additional variance in criterion validation measures, above and beyond the usual IQ scores. Additionally, individual and group-level cognitive strengths and weaknesses are recovered using deviation scores.ConclusionTraditional methods for generating IQ scores in lower functioning individuals with ID are inaccurate and inadequate, leading to erroneously flat profiles. However assessment of cognitive abilities is substantially improved by measuring true deviation in performance from standardization sample norms. This work has important implications for standardized test development, clinical assessment, and research for which IQ is an important measure of interest in individuals with neurodevelopmental disorders and other forms of cognitive impairment

    Clinical and molecular correlates in fragile X premutation females.

    Get PDF
    The prevalence of the fragile X premutation (55-200 CGG repeats) among the general population is relatively high, but there remains a lack of clear understanding of the links between molecular biomarkers and clinical outcomes. In this study we investigated the correlations between molecular measures (CGG repeat size, FMR1 mRNA, FMRP expression levels, and methylation status at the promoter region and in FREE2 site) and clinical phenotypes (anxiety, obsessive compulsive symptoms, depression and executive function deficits) in 36 adult premutation female carriers and compared to 24 normal control subjects. Premutation carriers reported higher levels of obsessive compulsive symptoms, depression, and anxiety, but demonstrated no significant deficits in global cognitive functions or executive function compared to the control group. Increased age in carriers was significantly associated with increased anxiety levels. As expected, FMR1 mRNA expression was significantly correlated with CGG repeat number. However, no significant correlations were observed between molecular (including epigenetic) measures and clinical phenotypes in this sample. Our study, albeit limited by the sample size, establishes the complexity of the mechanisms that link the FMR1 locus to the clinical phenotypes commonly observed in female carriers suggesting that other factors, including environment or additional genetic changes, may have an impact on the clinical phenotypes. However, it continues to emphasize the need for assessment and treatment of psychiatric problems in female premutation carriers

    Assessment of Molecular Measures in Non-FXTAS Male Premutation Carriers

    Get PDF
    Approximately 30–40% of male and 8–16% of female carriers of the Fragile X premutation will develop a neurodegenerative movement disorder characterized by intentional tremor, gait ataxia, autonomic dysfunction, cognitive decline, and Parkinsonism during their lifetime. At the molecular level, premutation carriers have increased expression levels of the FMR1 and the antisense FMR1 (ASFMR1) mRNAs. Both genes undergo alternative splicing giving rise to a number of different transcripts. Alteration in the alternative splicing process might be associated with FXTAS. In this study, we have investigated the correlation between objective measures of movement (balance and tremor using the CATSYS battery) and the expression of both the FMR1 and the ASFMR1 genes. In addition, we investigated whether their expression level and that of the ASFMR1 131 bp splice isoform could distinguish between premutation carriers with FXTAS and non-FXTAS premutation carriers. Confirming previous findings, the expression levels of transcripts at the FMR1 locus positively correlated with the CGG repeat number and significantly differentiated the premutation carriers from the control groups. Furthermore, premutation carriers with and without FXTAS, showed a significant difference in the expression level of the ASFMR1 131 bp splice isoform when compared to age and gender matched controls. However, there was no significant difference in the ASFMR1 131 bp splice isoform expression level when comparing premutation carriers with and without FXTAS. Finally, our results indicate significant group differences in CATSYS dominant hand reaction time and postural sway with eyes closed in premutation carriers without FXTAS compared to controls. In addition, a significant inverse association between the tremor intensity and the expression level of ASFMR1 131 bp splice isoform in premutation carriers compared to controls, was observed, suggesting a potential role in the pathogenesis of FXTAS
    • …
    corecore