42 research outputs found
Interhospital Transfer Before Thrombectomy Is Associated With Delayed Treatment and Worse Outcome in the STRATIS Registry (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke).
BACKGROUND: Endovascular treatment with mechanical thrombectomy (MT) is beneficial for patients with acute stroke suffering a large-vessel occlusion, although treatment efficacy is highly time-dependent. We hypothesized that interhospital transfer to endovascular-capable centers would result in treatment delays and worse clinical outcomes compared with direct presentation.
METHODS: STRATIS (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke) was a prospective, multicenter, observational, single-arm study of real-world MT for acute stroke because of anterior-circulation large-vessel occlusion performed at 55 sites over 2 years, including 1000 patients with severe stroke and treated within 8 hours. Patients underwent MT with or without intravenous tissue plasminogen activator and were admitted to endovascular-capable centers via either interhospital transfer or direct presentation. The primary clinical outcome was functional independence (modified Rankin Score 0-2) at 90 days. We assessed (1) real-world time metrics of stroke care delivery, (2) outcome differences between direct and transfer patients undergoing MT, and (3) the potential impact of local hospital bypass.
RESULTS: A total of 984 patients were analyzed. Median onset-to-revascularization time was 202.0 minutes for direct versus 311.5 minutes for transfer patients (
CONCLUSIONS: In this large, real-world study, interhospital transfer was associated with significant treatment delays and lower chance of good outcome. Strategies to facilitate more rapid identification of large-vessel occlusion and direct routing to endovascular-capable centers for patients with severe stroke may improve outcomes.
CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02239640
Efficacy and safety of vertebroplasty for treatment of painful osteoporotic vertebral fractures: a randomised controlled trial [ACTRN012605000079640]
Background. Vertebroplasty is a promising but as yet unproven treatment for painful osteoporotic vertebral fractures. It involves radiographic-guided injection of various types of bone cement directly into the vertebral fracture site. Uncontrolled studies and two controlled quasi-experimental before-after studies comparing volunteers who were offered treatment to those who refused it, have suggested an early benefit including rapid pain relief and improved function. Conversely, several uncontrolled studies and one of the controlled before-after studies have also suggested that vertebroplasty may increase the risk of subsequent vertebral fractures, particularly in vertebrae adjacent to treated levels or if cement leakage into the adjacent disc has occurred. As yet, there are no completed randomised controlled trials of vertebroplasty for osteoporotic vertebral fractures. The aims of this participant and outcome assessor-blinded randomised placebo-controlled trial are to i) determine the short-term efficacy and safety (3 months) of vertebroplasty for alleviating pain and improving function for painful osteoporotic vertebral fractures; and ii) determine its medium to longer-term efficacy and safety, particularly the risk of further fracture over 2 years. Design. A double-blind randomised controlled trial of 200 participants with one or two recent painful osteoporotic vertebral fractures. Participants will be stratified by duration of symptoms (< and ≥ 6 weeks), gender and treating radiologist and randomly allocated to either the treatment or placebo. Outcomes will be assessed at baseline, 1 week, 1, 3, 6, 12 and 24 months. Outcome measures include overall, night and rest pain on 10 cm visual analogue scales, quality of life measured by the Assessment of Quality of Life, Osteoporosis Quality of Life and EQ-5D questionnaires; participant perceived recovery on a 7-point ordinal scale ranging from 'a great deal worse' to 'a great deal better'; disability measured by the Roland-Morris Disability Questionnaire; timed 'Up and Go' test; and adverse effects. The presence of new fractures will be assessed by radiographs of the thoracic and lumbar spine performed at 12 and 24 months. Discussion. The results of this trial will be of major international importance and findings will be immediately translatable into clinical practice. Trial registration. Australian Clinical Trial Register # [ACTRN012605000079640]. © 2008 Buchbinder et al; licensee BioMed Central Ltd.Rachelle Buchbinder, Richard H Osborne, Peter R Ebeling, John D Wark, Peter Mitchell, Chris J Wriedt, Lainie Wengier, David Connell, Stephen E Graves, Margaret P Staples and Bridie Murph
Coronavirus Disease 2019 and the Cerebrovascular-Cardiovascular Systems: What Do We Know So Far?
The severe acute respiratory syndrome coronavirus 2 pandemic of 2019 to 2020 has resulted in multiple hospitalizations, deaths, and economic hardships worldwide. Although respiratory involvement in patients with coronavirus disease 2019 (COVID-19) is well known, the potential cardiovascular and cerebrovascular manifestations are less understood. We performed a PubMed and Google Scholar search and reviewed relevant literature on COVID-19 and cardiovascular system involvement. Severe acute respiratory syndrome coronavirus 2 possesses high affinity for angiotensin-converting enzyme 2 receptor, which is highly concentrated in the lungs and cardiovascular tissue, thereby provoking concern for cardiovascular involvement in COVID-19 cases. Preexisting cardiovascular and cerebrovascular disease has been shown in previous reports to be a risk factor for severe infection. On the basis of our review of published studies, COVID-19 patients may be more likely to experience acute cardiac injury, arrhythmia, coagulation defects, and acute stroke and are likely to have poorer outcomes as a result. As the COVID-19 pandemic continues, more data about potential cardiovascular and cerebrovascular manifestations of the disease are required
Acute ischemic stroke secondary to cardiac embolus of a ‘foreign body’ material after a redo sternotomy for mitral valve replacement: A case report
Cardiac surgery has been shown to be associated with increased risk of acute ischemic stroke. This report presents a case of a successful mechanical embolectomy procedure to treat a patient for an acute ischemic stroke, which was caused by the cardiac embolization of a ‘foreign body’ containing debris following a redo sternotomy procedure for mitral valve replacement and tricuspid valve annuloplasty.This work was supported by the National Institutes of Health (R01
NS105853), Science Foundation Ireland (13/RC/2073) and our industrial partners Cerenovus
Vertebroplasty and the Placebo Response
Our interpretation of the evidence for vertebroplasty has distinctive implications for clinical practice and health policy
Benchtop Proof of Concept and Comparison of Iron- and Magnesium-Based Bioresorbable Flow Diverters
OBJECTIVE: Bioresorbable flow diverters (BRFDs) could significantly improve the performance of next-generation flow diverter technology. In the current work, magnesium and iron alloy BRFDs were prototyped and compared in terms of porosity/pore density, radial strength, flow diversion functionality, and resorption kinetics to offer insights into selecting the best available bioresorbable metal candidate for the BRFD application.
METHODS: BRFDs were constructed with braided wires made from alloys of magnesium (MgBRFD) or iron (FeBRFD). Pore density and crush resistance force were measured using established methods. BRFDs were deployed in silicone aneurysm models attached to flow loops to investigate flow diversion functionality and resorption kinetics in a simulated physiological environment.
RESULTS: The FeBRFD exhibited higher pore density (9.9 vs 4.3 pores / mm2) and crush resistance force (0.69 ± 0.05 vs 0.53 ± 0.05 N / cm, p = 0.0765, n = 3 per group) than the MgBRFD, although both crush resistances were within the range previously reported for FDA-approved flow diverters. The FeBRFD demonstrated greater flow diversion functionality than the MgBRFD, with significantly higher values of established flow diversion metrics (mean transit time 159.6 ± 11.9 vs 110.9 ± 1.6, p = 0.015 inverse washout slope 192.5 ± 9.0 vs 116.5 ± 1.5, p = 0.001 n = 3 per group both metrics expressed as a percentage of the control condition). Last, the FeBRFD was able to maintain its braided structure for \u3e 12 weeks, whereas the MgBRFD was almost completely resorbed after 5 weeks.
CONCLUSIONS: The results of this study demonstrated the ability to manufacture BRFDs with magnesium and iron alloys. The data suggest that the iron alloy is the superior material candidate for the BRFD application due to its higher mechanical strength and lower resorption rate relative to the magnesium alloy