598 research outputs found

    Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts

    Get PDF
    The objective was to test ultrasound treatments on spinach leaves during extraction, and conventional extraction was used as a control. The effects of different combinations of the ultrasonic water bath factors tested on phenolic compound yields included frequency (37 and 80 kHz), exposure time (5, 10, 15, 20, 25 and 30 min), temperature (30, 40, and 50 C), and ultrasonic power (30%, 50%, and 70%). The best conditions for extraction yields were ultrasonic frequency of 37 kHz, extraction time of 30 min, reaction temperature of 40 C, and ultrasonic power of 50%. The mean yield (mg/100 g), total phenol (mg gallic acid/g DW), flavonoids (mg/g DW), % DPPH free-radical scavenging activity, and % ferric reducing antioxidant power were all high (64.88 ± 21.84, 33.96 ± 11.30, 27.37 ± 11.85, 64.18 ± 16.69 and 70.25 ± 9.68). Treatments were significantly different. The interaction among the ultrasonic parameters was significant. Temperature and power had significant effects on all other dependent variables

    Simultaneous extraction, optimization, and analysis of flavonoids and polyphenols from peach and pumpkin extracts using a TLC-densitometric method

    Get PDF
    Background: The use of medicinal plants has been reported throughout human history. In the fight against illnesses, medicinal plants represent the primary health care system for 60 % of the world’s population. Flavonoids are polyphenolic compounds with active anti-microbial properties; they are produced in plants as pigments. Quercetin, myricetin, and rutin are among the most well-known and prevalent flavonoids in plants, with an antioxidant activity capable of decreasing the oxidation of low density lipoproteins [LDLs]. To date, this research is the first of its kind to employ a coupled thin-layer chromatography (TLC) and a densitometric quantification method with a Box-Behnken design (BBD) response surface methodology (RSM) for optimization of ultrasonic-assisted extraction and determination of rutin and quercetin from peach and ellagic acid and myricetin from pumpkin fruits. Results: The effect of process variables (extraction temperature (°C), extraction power (%) and extraction time (min)) on ultrasound-assisted extraction (UAE) were examined by using BBD and RSM. TLC followed by Quantity-One™ (BioRad) image analysis as a simple and rapid method was used for identification and quantification of the compounds in complex mixtures. The results were consistent under optimal conditions among the experimental values and their predicted values. A mass spectrometry (MALDI-TOF MS) technique was also used to confirm the identity of the natural products in the TLC spots resolved. Conclusion: The results show that the coupled TLC-densitometric methods & BBD can be a very powerful approach to qualitative and quantitative analysis of; rutin and quercetin from peach extracts; and ellagic acid and myricetin contents from pumpkin extracts

    Employing Response Surface Methodology for the Optimization of Ultrasound Assisted Extraction of Lutein and β-Carotene from Spinach

    Get PDF
    Abstract: The extraction of lutein and β-carotene from spinach (Spinacia oleracea L.) leaves is important to the dietary supplement industry. A Box-Behnken design and response surface methodology (RSM) were used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE) of lutein and β-carotene from spinach. Three independent variables, extraction temperature (°C), extraction power (%) and extraction time (min) were studied. Thin-layer chromatography (TLC) followed by UV visualization and densitometry was used as a simple and rapid method for both identification and quantification of lutein and β-carotene during UAE. Methanol extracts of leaves from spinach and authentic standards of lutein and β-carotene were separated by normal-phase TLC with ethyl acetate-acetone (5:4 (v/v)) as the mobile phase. In this study, the combination of TLC, densitometry, and Box–Behnken with RSM methods were effective for the quantitative analysis of lutein and β-carotene from spinach extracts. The resulting quadratic polynomial models for optimizing lutein and β-carotene from spinach had high coefficients of determination of 0.96 and 0.94, respectively. The optimal UAE settings for output of lutein and β-carotene simultaneously from spinach extracts were an extraction temperature of 40 °C, extraction power of 40% (28 W/cm3) and extraction time of 16 min. The identity and purity of each TLC spot was measured using time-of-flight mass spectrometry. Therefore, UAE assisted extraction of carotenes from spinach can provide a source of lutein and β-carotene for the dietary supplement industr

    Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts

    Get PDF
    There are concerns about using synthetic phenolic antioxidants such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) as food additives because of the reported negative effects on human health. Thus, a replacement of these synthetics by antioxidant extractions from various foods has been proposed. More than 8000 different phenolic compounds have been characterized; fruits and vegetables are the prime sources of natural antioxidants. In order to extract, measure, and identify bioactive compounds from a wide variety of fruits and vegetables, researchers use multiple techniques and methods. This review includes a brief description of a wide range of different assays. The antioxidant, antimicrobial, and anticancer properties of phenolic natural products from fruits and vegetables are also discussed

    Staphylococcus pseudintermedius Sbi paralogs inhibit complement and bind IgM, IgG Fc and Fab

    Get PDF
    The success of staphylococci as pathogens has been attributed, in part, to their ability to evade their hosts’ immune systems. Although the proteins involved in evasion have been extensively studied in staphylococci affecting humans little characterization has been done with Staphylococcus pseudintermedius, an important cause of pyoderma in dogs. Staphylococcus aureus binder of immunoglobulin (Sbi) interferes with innate immune recognition by interacting with multiple host proteins. In this study, a S. pseudintermedius gene that shares 38% similarity to S. aureus Sbi was cloned from S. pseudintermedius strains representative of major clonal lineages bearing two paralogs of the protein. Binding of immunoglobulins and Fab and Fc fragments as well as interaction with complement was measured. S. pseudintermedius Sbi protein bound IgG from multiple species and canine complement C3, neutralized complement activity and bound to canine IgM and B cells. Evidence from this work suggests Sbi may play an important role in S. pseudintermedius immune evasion

    Multiphoton Microscopy for Ophthalmic Imaging

    Get PDF
    We review multiphoton microscopy (MPM) including two-photon autofluorescence (2PAF), second harmonic generation (SHG), third harmonic generation (THG), fluorescence lifetime (FLIM), and coherent anti-Stokes Raman Scattering (CARS) with relevance to clinical applications in ophthalmology. The different imaging modalities are discussed highlighting the particular strength that each has for functional tissue imaging. MPM is compared with current clinical ophthalmological imaging techniques such as reflectance confocal microscopy, optical coherence tomography, and fluorescence imaging. In addition, we discuss the future prospects for MPM in disease detection and clinical monitoring of disease progression, understanding fundamental disease mechanisms, and real-time monitoring of drug delivery
    corecore