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Abstract: The extraction of lutein and β-carotene from spinach (Spinacia oleracea L.) 

leaves is important to the dietary supplement industry. A Box-Behnken design and response 

surface methodology (RSM) were used to investigate the effect of process variables on the 

ultrasound-assisted extraction (UAE) of lutein and β-carotene from spinach. Three 

independent variables, extraction temperature (°C), extraction power (%) and extraction time 

(min) were studied. Thin-layer chromatography (TLC) followed by UV visualization and 

densitometry was used as a simple and rapid method for both identification and 

quantification of lutein and β-carotene during UAE. Methanol extracts of leaves from 

spinach and authentic standards of lutein and β-carotene were separated by normal-phase 

TLC with ethyl acetate-acetone (5:4 (v/v)) as the mobile phase. In this study, the combination 

of TLC, densitometry, and Box–Behnken with RSM methods were effective for the 

quantitative analysis of lutein and β-carotene from spinach extracts. The resulting quadratic 

polynomial models for optimizing lutein and β-carotene from spinach had high coefficients 

of determination of 0.96 and 0.94, respectively. The optimal UAE settings for output of 

lutein and β-carotene simultaneously from spinach extracts were an extraction temperature of 

40 °C, extraction power of 40% (28 W/cm3) and extraction time of 16 min. The identity and 
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purity of each TLC spot was measured using time-of-flight mass spectrometry. Therefore, 

UAE assisted extraction of carotenes from spinach can provide a source of lutein and  

β-carotene for the dietary supplement industry. 

Keywords: lutein; β-carotene; spinach; ultrasound; TLC; densitometry; mass spectrometry 

 

1. Introduction  

Medicinal plants have been used throughout human history [1]. Modern researchers have sought to 

isolate and quantify the natural products underlying the medicinal properties of certain plant parts [2,3]. 

In addition, the growing interest in functional foods has increased the demand for new food ingredients 

extracted from natural products [4,5]. Carotenoids are considered one of the most important groups of 

medicinal natural products. These natural products contribute the yellow to red colors in many flowers, 

fruits and vegetables. Fruits and vegetables are important sources of two carotenoids important to eye 

health, lutein and β-carotene. For example, substantial amounts of lutein and β-carotene (40%–60% of 

daily dietary needs) are found in a single serving of kiwi fruit (Actinidia sp.), grapes (Vitis sp.), spinach 

(Spinacia oleracea L.), and squashes Cucurbit sp. [6]. Spinach is very important for human health and 

is considered a good source of vitamins A, C, and E. Further, it is very rich in bioactive compounds such 

as phenolics and carotenoids [7]. 

Several important health benefits of lutein and β-carotene have been determined [8]. A high 

concentration of lutein in the macula lutea protects against age–related macular degeneration [9].  

Lutein and β-carotene are very effective in neutralizing a highly reactive form of oxygen called singlet 

oxygen [10]. Further, populations with low amounts of β-carotene in their blood often have a higher 

incidence of heart disease and cancer, particularly lung cancer [4]. 

Researchers have discovered many advanced methods to isolate and measure the activity of 

antioxidant compounds such as flavonoids, phenolic acids, tocopherols, carotenoids, and ascorbic  

acid [11]. A recent review article regarding thin layer chromatography (TLC) analysis of carotenoids in 

plant and animal samples emphasized the need to study the application of scanning densitometry in 

quantification of carotenoids and flavonoids [12]. TLC is widely used because it is relatively simple, 

rapid, inexpensive, and accurate method for chemical identification and can be verified with MS. TLC 

combined with densitometry and image analysis offers quantitative analysis of medicinal plant 

components. Densitometry can be used to measure the differences among absorbance or fluorescence 

signals between a separated zone and the empty plate background across a range of wavelengths [13]. 

Image analysis methods are used to compare the spot color intensity with the plate color background. 

The peak area of the test spots are compared with data from calibration standards chromatographed on 

the same plate [14]. 

Several techniques have been used for analyzing plant extracts, including TLC [15], gas 

chromatography-mass spectrometry (GC-MS) [16], and high-performance liquid chromatography 

(HPLC) [5]. HPLC has been widely used, but TLC-densitometry has two advantages, both of increased 

sensitivity and the ability to process a large number of samples in a short time [17]. Previously, the use 

of the TLC-densitometry method had not been reported for quantitative determination of lutein and β-
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carotene from spinach. Ultrasonic treatment in food processing was evaluated by Chemat et al. [18] and 

was found to be very effective by decreasing the processing time, reducing the cost of extraction, 

preventing thermal damage, and enhancing food quality. The aim of this research was to optimize 

ultrasonic-assisted extraction of lutein and β-carotene from spinach. Further, the identities and purity of 

the natural products in the TLC spots were assayed using matrix-assisted laser desorption/ionization 

time-off-light mass spectrometry (MALDI-TOF MS) analysis. 

2. Results and Discussion  

2.1. Chromatographic Separation and Image Analysis Software 

TLC-densitometry coupled with image analysis detection was evaluated for the quantitative 

determination of induced carotenoid. The method was suitable for rapid quantification of lutein and  

β-carotene in spinach extracts. It required less time for sample preparation and quantification compared 

to HPLC. These findings were in reasonable agreement with [19]. 

2.2. Fitting the Models 

The results of the lutein and β-carotene extractions as measured by TLC-densitometry for each of the 

Box-Behnken design variable settings were summarized in Table 1. Multiple regression analysis was 

completed by fitting the data to the quadratic polynomial model (Equation (3)). The analysis of variance 

(ANOVA) and regression coefficients for the resulting model were presented in Table 2 and indicate the 

contribution of the variables to the quadratic model [20]. In general, the lack of fit test for the model 

describes the variation in the data around the fitted model [21]. If the model does not fit the data well, 

the value of lack of fit will be significant. In that case proceeding with optimization of the fitted response 

surface is likely to give misleading results. For both lutein and β-carotene, the lack of fit was not 

significant (p > 0.05), indicating the validity of the response surface results. 

2.3. Effect of Ultrasonic Parameters on Lutein and β-Carotene Contents of Spinach and Analysis of 

Response Surfaces 

Table 2 shows the analysis of variance of the fitted quadratic polynomial model for lutein and  

β-carotene content. For lutein content (μg/g), the linear parameter (X2), the interaction parameter (X2X3), 

and the quadratic parameters (Xଵଶ, Xଶଶ, Xଷଶ)	were significant (p < 0.05). Similarly for β-carotene content 

(μg/g), the linear parameter (X2), the interaction parameter (X2X3), and the quadratic parameters (Xଵଶ, Xଶଶ, Xଷଶ) were significant (p < 0.05). The results indicate the models used to fit response variables 

were adequate to represent the relationship between the response values and the independent variables. 

The R2 of the models for lutein and β-carotene content were 0.96 and 0.94, respectively. Moreover, the 

coefficients of variation (CV) were 1.58 and 1.53, respectively. A relatively lower value of CV indicates 

a better reliability of the response model [22]. 
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Table 1. Summary of independent variable settings of ultrasonic treatments for Box-Behnken 

design, amounts of lutein and β-carotene extracted from spinach, and predicted values based 

on RSM model. 

Run 
Factor X1: Temperature 

(°C) 

Factor X2: Power 

(%) 

Factor X3: Time 

(min) 

Lutein μg/g β-Carotene μg/g 

Actual Predicted Actual Predicted 

1 40 30 10 2.08 2.05 3.10 3.07 

2 50 50 10 1.92 1.91 2.90 2.88 

3 40 70 10 1.82 1.85 2.80 2.82 

4 30 50 30 1.88 1.89 2.86 2.88 

5 40 50 20 2.04 2.06 3.08 3.10 

6 40 70 30 1.97 1.98 2.93 2.96 

7 50 50 30 1.84 1.85 2.81 2.78 

8 30 30 20 1.87 1.89 2.90 2.90 

9 40 50 20 2.07 2.06 3.11 3.10 

10 50 70 20 1.83 1.81 2.80 2.80 

11 30 50 10 1.88 1.87 2.82 2.85 

12 30 70 20 1.85 1.83 2.91 2.86 

13 40 50 20 2.09 2.06 3.12 3.10 

14 50 30 20 1.87 1.89 2.84 2.89 

15 40 50 20 2.03 2.06 3.06 3.10 

16 40 30 30 1.92 1.89 2.88 2.86 

17 40 50 20 2.09 2.06 3.12 3.10 

Table 2. Analysis of variance results for the multiple regression to predict lutein and β-carotene. 

Source Degree of Freedom Sum of Square  Mean Square  f-Value p-Value 

lutein 

Model 9 0.1560 0.017 18.40 0.0004 

X1 1 4.9999 4.9999 0.053 0.8244 

X2 1 0.0091 0.0091 9.67 0.0171 

X3 1 0.0010 0.0010 1.07 0.3344 

X1X2 1 0.0001 0.0001 0.11 0.7541 

X1X3 1 0.0016 0.0016 1.70 0.2337 

X2X3 1 0.0240 0.0240 25.50 0.0015 Xଵଶ 1 0.0804 0.0804 85.42 <0.0001 Xଶଶ 1 0.0210 0.0210 22.37 0.0021 Xଷଶ 1 0.0088 0.0088 9.35 0.0184 

Lack of fit 3 3.475 0.0011 1.49 0.3461 

β-carotene 

Model 9 0.2336 0.026 12.86 0.0014 

X1 1 0.00245 0.00245 1.21 0.3070 

X2 1 0.0097 0.0097 4.85 0.0434 

X3 1 0.00245 0.00245 1.21 0.3070 

X1X2 1 0.0006 0.0006 0.31 0.5952 

X1X3 1 0.004225 0.004225 2.09 0.1912 

X2X3 1 0.030625 0.030625 15.17 0.0059 Xଵଶ 1 0.1047 0.1047 51.91 0.0002 Xଶଶ 1 0.0254 0.0254 12.61 0.0093 Xଷଶ 1 0.0362 0.0362 17.94 0.0039 

Lack of fit 3 0.011 3.750 5.21 0.0724 
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In order to visualize the relationship between the response and experimental levels of the independent 

variables for the UAE, three-dimensional (3D) surface plots were constructed according to the following 

quadratic polynomial model equations of coded factors:  

Lutein = 2.064 − 0.0024X1 − 0.03375X2 − 0.01125X3 − 0.005X1X2  

− 0.02X1X3 + 0.0775X2X3 − 0.13825Xଵଶ − 0.07075Xଶଶ − 0.04575Xଷଶ 
(1)

Β-carotene = 3.098 − 0.0175X1 −0.035X2 − 0.0175X3 − 0.0125X1X2  
− 0.0325X1X3 + 0.0875X2X3 − 0.15775Xଵଶ − 0.07775Xଶଶ − 0.09275Xଷଶ 

(2)

The effect of the variables and their interaction on predicted lutein extraction can be seen in  

Figure 1. As shown in Figure 1A,B, lutein content was positively correlated with extraction temperature 

when temperature was lower than about 40 °C. However, lutein was negatively correlated when 

temperature increased beyond about 40 °C when extraction time was fixed at 20 min (panel A) and when 

power was set at 50% (panel B). The optimum temperature for maximum lutein extraction was 40.5 °C. 

These current results were in agreement with Palma and Taylor [23]. It is true that higher temperatures 

lead to increase in diffusion coefficient and solubility but at the same time the high temperatures may 

result in degradation of phenolic natural products. Figure 1C with temperature set at 40 °C, showed 

increased lutein extraction at lower time and power settings. The response surface method took into 

account the possible interrelationships among the test variables thereby minimizing the number of 

experiments needed. Therefore, the time and costs of UAE were reduced compared to the conventional 

optimization method where only one factor is varied at a time while all the others are kept constant, and 

which ignores the combined interactions between variables [24]. Rebecca et al. [25] also used a 

conventional extraction method to extract carotenoids such as lutein and β-carotene from red capsicum 

(Capsicum annuum L.), yellow capsicum (C. annuum), red spinach (Amaranthus dubius L.), carrot 

(Daucus carota L.) and broccoli (Brassica oleracea L.). Although no comparative studies of 

conventional and UAE methods with spinach have been reported, conventional methods require more 

steps in preparation, have a loss of solvents, require more time, and require multiple separation steps. 

For lutein extraction, the optimum power setting was 38.3% and optimum time was 16.2 min. 

Figure 2 illustrates the effect of the variables and their interaction on predicted β-carotene extraction. 

Figure 2A shows the effect of the interaction of extraction temperature and power at a fixed extraction 

time of 20 min and Figure 2B shows time and temperature with power fixed at the midpoint of 50%. 

Similar to lutein yield, β-carotene extraction seems to peak near 40 °C temperature. With temperature 

held at the midpoint of 40 °C (Figure 2C), maximum β-carotene yield is observed when both time and 

power are below their respective midpoints. The optimized parameter settings for predicted β-carotene 

output were 39.9 °C, 42.5% power, and 17.3 min.  
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Figure 1. Response surface model plot showing the effects of independent variables on 

Lutein content: panel A temperature and power; panel B temperature and time; and panel C 

power and time. 

A 

B 
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Figure 2. Response surface model plot showing the effects of independent variables on  

β-carotene content: panel A temperature and power; panel B temperature and time; and  

panel C power and time. 

2.4. Optimization and Verification of the Model for Ultrasonic Parameters  

Optimum process parameters were determined by simultaneously maximizing lutein and β-carotene 

extractions. During the optimization stage, the desirability function of the Design-ExpertTM software 

(version 9) statistical software was used to obtain the best compromise of all responses. The predicted 

A 

B 

C 
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optimal conditions for simultaneous ultrasonic extraction were found at 40.1 °C temperature, 41.1% 

power, and 16.2 min of ultrasonic treatment with results of 2.08 μg/g of lutein and 3.11 μg/g of  

β-carotene. The UAE process was repeated at near optimum conditions by modifying the extraction 

temperature of 40.1 °C to 40 °C, and extraction power 41.1% to 40% and extraction time 16.2 min to  

16 min. With these settings, total extracted lutein and β-carotene contents were 2.01 ± 0.04 μg/g and 

3.07 ± 0.04 μg/g, respectively. Table 3 summarizes the amounts of lutein and β-carotene content under 

the optimal predicted conditions and actual experimental conditions. There was no significant difference 

(p > 0.05) between the experimental and predicted values. Hence, the models can be used to optimize 

the process of lutein and β-carotene contents from spinach. 

Table 3. Predicted and actual experimental values of lutein and β-carotene (μg/g) from 

spinach extracts under the modified optimal extraction conditions. 

Name 
Extraction Variables 

Lutein (LS) β-Carotene (BS) 
X1 (°C) X2 (%) X3 (min) 

Optimum conditions( predicted) 40.14 41.13 16.21 2.07 3.10 

Modified optimal condition 

(experimental values) * 40 40 16 2.01 ± 0.040 3.07 ± 0.02 

* Mean ± standard deviation (n = 3). 

 

Figure 3. Mass spectra of spinach extract TLC spot LS of experimental condition (panel A) 

and TLC spot BS of experimental condition (panel C) excised and compared to lutein (panel 

B) and β-carotene (panel D) standards. 
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2.5. MALDI Identification  

Figure 3 shows the MALDI mass spectra obtained for TLC Spot LS (Figure 3A) and TLC Spot BS 

(Figure 3C). Ion signals were observed at m/z 568.2 and 536.2. These ion signals were also observed in 

the MALDI mass spectra obtained from the certified lutein (Figure 3B) and β-carotene (Figure 3D) 

standards, respectively, and were assigned to the molecular radical cations (M+.) of each standard. Thus 

the lutein and β-carotene identified by TLC-densitometry were confirmed by MALDI mass spectra and 

appeared as pure as the standards purchased (>98%). 

3. Experimental Section 

3.1. Spinach Material 

Spinach (cv. ‘Tyee’) was grown according to typical commercial methods for southern Illinois at the 

Horticulture Research Center of Southern Illinois University (Carbondale, IL, USA). Fresh spinach 

leaves were harvested from randomly selected plants. The leaves were washed, sliced into small pieces, 

mixed together, crushed in a blender, sealed in plastic bags, and stored at −18 °C. After five days all 

samples were freeze-dried. 

3.2. Ultrasonic–Assisted Extraction (UAE) 

An Elmasonic P30 (P30) ultrasonic device with heated water bath (Elma Hans Schmidbauer GMBH, 

Singen, Germany) set at 37 kHz was used for this study. The P30 had user adjustable controls of heated bath 

temperatures and power settings. Power could be adjusted as a percentage of full power (30%–100%). 

The standard ultrasonic mode was used. The manufacturer rated the P30 with an effective power rating 

of 120 W. The P30 had a proprietary algorithm to adjust power based on the impedance of the system, 

resulting in the effective power rating. For a specific power setting, samples experienced the same degree 

of cavitation regardless of the load in the tank. For all treatments, the bath of the P30 contained 1.7 L of 

water before the treatment containers were added. Ultrasonic power was expressed as W/cm2, based on 

the power setting as a percentage of rated power and the volume of the bath solution. 

Although numerous variables my affect a process, identifying and controlling each variable with 

small contributions is practically impossible, therefore, variables were selected with known major  

effects [26]. The prior work of Altemimi et al. [27] with the same ultrasonic equipment was used as a 

guide and selected variables were bath temperatures of 30 °C, 40 °C , and 50 °C; power level settings of 

30%, 50%, and 70%; and ultrasonic duration of 10 min, 20 min, and 30 min. Based on the manufacturer’s 

effective power rating, the ultrasonic power for the three power settings inside the extract containers was 

21 W/cm2, 35 W/cm2, and 49 W/cm2, respectively. These power settings were independently verified 

using a calorimetric method. 

Crude extracts were prepared as per Altemimi et al. [27]. Briefly, ten grams of the lyophilized crushed 

spinach were placed in a 200 mL glass flask and 100 mL of methanol were added to the flask. Each flask 

was placed in the P30 and treated. After the samples had been exposed to ultrasound waves, the upper 

layer was filtered (Whatman no. 1 paper) and placed in a rotary evaporator under vacuum at 40 °C to 
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remove solvent. The spinach preparation, ultrasonic equipment, and treatment process were similar, but 

a different experimental design was used for the objectives of this study. 

3.3. Experimental Design 

The effects of three independent variables of temperature, power, and time to optimize the extracted 

amount of lutein and β-carotene was investigated by using a Box–Behnken design for RSM. The coded 

values of the experimental factors and settings for the experimental design were summarized in Table 4 

and the complete list of experiments was included in Table 1. The 17 ultrasonic treatments were 

completed in random order. The experimental data were analyzed with multiple regression to fit the 

quadratic polynomial model in Equation (3): 

ܻ = ܾ଴ +෍ܾ௜ ௜ܺଷ
௜ୀଵ +෍ܾ୧୧ܺଶ௜ଷ

௜ୀଵ + ෍ ܾ୧୧ ௜ܺ ௝ܺଷ
௜ஷ௝ୀଵ  (3)

where Y is the predicted response; b0 is the intercept; b1, b2 and b3 are the linear coefficients of 

temperature (X1), power (X2) and time (X3), respectively; b11, b22 and b33 are the squared coefficient of 

temperature of sonication, power and time, respectively; b12, b13 and b23 are the interaction coefficients 

of temperature of sonication, power and time, respectively. The settings of the independent variables 

were represented as Xi to Xj. 

Table 4. Independent variables, symbols and levels used in this Box-Behnken design. 

Symbols Independent Variables −1 0 1 

X1 Temperature (°C) 30 40 50 
X2 Power (%) 30 50 70 
X3 Time (min) 10 20 30 

3.4. Thin Layer Chromatography Chemical Screening 

The glass TLC plates were 20 cm by 20 cm and pre-coated with silica gel 60 F254 (E. 

Merck/Millipore, Billerica, MA, USA, 0.2 mm thickness). Three solvents combinations were evaluated 

for use in the TLC plate to determine the best combination for lutein and β-carotene separation. The 

solvents were; (1) 5:4 (v/v) ethyl acetate‒acetone; (2) 1:1 (v/v) hexane‒chloroform and (3) 60:3:5 (v/v) 

benzene‒acetic acid‒water. The TLC plate was placed into oven at 110 °C for 20–30 min to dry 

completely. Each of the solvents was evaluated by mixing and placing 100 mL into a rectangular 

chromatography glass tank with ground edges. The glass tank was covered with a glass lid and solvents 

were allowed to saturate for 30–40 min before use. Two µL of each spinach crude extract was added by 

syringe to a different TLC plate in a drop shape for identification and spread of the separated compounds 

according to Harbone [28]. Carotenoids were determined by spraying spots with a 2.54 mM DPPH 

(diphenylpycrylhydrazyl) methanol solution for derivatization. Spots sprayed with the DPPH were 

observed as white to yellow bands on a purple background [29]. Images of the TLC plates were analyzed 

using Quantity OneTM software (v6.5; Bio-Rad, Hercules, CA, USA). The compounds in the samples 

were quantified by comparing density of the peaks and their areas (expressed as intensity per mm2) from 

the samples with those from standard solutions of lutein and β-carotene on the same plate. The best 
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separation was obtained by ethyl acetate: acetone (5:4 (v/v)) and this solvent was used for quantification 

of lutein and β-carotene. 

The software evaluated the area of separated spots by comparing the spot color intensity to the color 

of the TLC plate background. It was essential to chromatograph the standards on the same plates to 

compensate for slight variations among the different plates (Figure 4). The software generated a 

calibration curve that allowed the quantitative evaluation of the TLC separation. 

 

Figure 4. The chromatographic separation of lutein (L) and β-carotene (B): (A) real visible 

light image; (B) UV image at 254 nm; and (C) grey scale image by Quantity One software. 

Spots: 1 to 17 for spinach extracts; L1 and L2 for lutein controls; and B1 and B2 for  

β-carotene controls. 

3.5. Preparation of Calibration Curves for Lutein and β-Carotene 

All chemicals used in the experiments were analytical grade reference standard compounds. Lutein 

(purity 95%) was procured from Indofine Chemical Company (Hillsborough Township, NJ, USA) and 

β-carotene (purity 98.1%) was purchased from MP Biomedicals LLC (Santa Ana, CA, USA). The stock 

solution of lutein (100 μg·μL−1) was prepared in methanol. Different volumes of the stock solution 2, 4, 

6, 8, 10, and 12 μL, were spotted on the TLC plate to obtain concentrations of 200, 400, 600, 800, 1000, 

and 1200 μg·spot−1 of lutein, respectively. The stock solution of β-carotene (80 μg·μL−1) was prepared 

in methanol. Different volumes of the stock solution 2, 4, 6, 8, 10, and 12 μL, were spotted on the TLC 

plate to obtain concentrations of 160, 320, 480, 690, 800, and 960 μg·spot−1 of β-carotene, respectively. 

These spots of the reference compounds were used to determine the calibration curves for the TLC-

densitometry (DOC 2000, Bio-Rad, Hercules, CA, USA). The calibration curves were used by Quantity 

OneTM software to generate accurate quantification of lutein and β-carotene in the experimental samples. 
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3.6. Simultaneous Quantification of Lutein and β-Carotene in the Spinach Extracts 

Two µL of each of the 17 spinach extracts were applied on a TLC plate. The plate was developed and 

scanned as described in the TLC chemical screening process. The peak areas were recorded and the 

amounts of lutein and β-carotene were calculated using the respective calibration curves. 

3.7. RSM Model and Validity Testing 

Design-ExpertTM software (version 9) was used to analyze the experimental results of the response 

surface design (State-Ease Inc., Minneapolis, MN, USA). A p-value less than 0.05 was considered to be 

significant. Independent variables of extraction temperature, ultrasonic power, and extraction time were 

simultaneously optimized by using RSM. Subsequently the output for each isolated compound was 

measured from spinach extracts under the optimum ultrasonic conditions. The ultrasonic experiments 

using the optimum conditions were replicated three times and the results were compared with the 

predicted values for validation of the model. 

3.8. Mass Spectrometric Analysis 

The confirmation of each TLC spot identity was achieved using time-of-flight mass spectrometry. 

Each TLC spot of interest was removed with a scalpel and eluted with methanol and filtered through 

Xpertek syringe filter (0.24 µm) (P. J. Cobert Associates, Inc., St. Louis, MO, USA) prior to mass 

spectrometric analysis. The freshly extracted compounds were then prepared for either matrix-assisted 

laser desorption ionization (MALDI) or laser desorption ionization (LDI). Certified standards of lutein 

and β-carotene were analyzed in tandem to confirm the identity and purity of each compound. 

A 2 μL aliquot of the TLC spot LS methanol extract of experimental condition was mixed with 10 

μL hexane. Subsequently, 1 μL of this sample solution was spotted with 1 μL of a saturated solution of 

the MALDI matrix, a saturated solution of dithranol in hexane on a stainless steel sample plate. TLC 

Spot BS methanol extract (2 μL) of experimental condition was also diluted in hexane (10 μL) and 

spotted with dithranol. Both TLC spots LS and BS were allowed to dry at room temperature. 

The stainless steel sample plate containing the dried MALDI and LDI samples was inserted into 

Bruker Daltonics MicroFlexLR time-of-flight mass spectrometer (Billerica, MA, USA). The samples were 

irradiated with a pulsed nitrogen laser and the positive ion signal was recorded in the mass-to-charge 

(m/z) region of 20 to 1000. Each mass spectrum consisted of an average of 1000 laser shots. 

4. Conclusions  

The results show that TLC-densitometric method & Box–Behnken design can be very powerful 

techniques for identification and quantitative analysis of carotenoids from spinach extracts. RSM was 

used to estimate and optimize the experimental variables of extraction temperature (°C), extraction 

power (%), and extraction time (min). Extraction power, the interaction of power and time, and quadratic 

of each of the three variables had a significant effect on the response values (lutein and β-carotene). 

Quadratic models for lutein and β-carotene content were derived with R2 = 0.96 and 0.94, for lutein and 

β-carotene, respectively. Output was optimized for each of lutein and β-carotene separately and 

simultaneously. The model predictions can be used to optimize lutein and β-carotene extraction from 
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spinach with UAE within the limits of the experimental variables. The modified optimal extraction 

conditions for measuring lutein and β-carotene simultaneously in spinach extracts were as follows; 

extraction temperature of 40 °C; extraction power of 40%; and extraction time of 16 min. Under these 

conditions, the experimental results of total lutein and β-carotene contents were 2.01 ± 0.04 μg/g and 

3.07 ± 0.04 μg/g, respectively, which agreed closely with the predicted yield values. 

Frozen, dried spinach that has been UAE treated may form a healthful part of the diets of many 

populations [27]. The extracts produced here could be incorporated into many recipes. Foods high in 

free beta carotene and lutein could be important components of military rations, where governments 

have a long term commitment to the healthcare of the service men and women.  

Purified lutein in particular, has a high value in the health supplement industry [30–32]. The amounts 

extracted here could provide a viable alternative to purifying lutein from marigold flowers by column 

chromatography or re-crystallization methods, which results in 93% purity [30]. Extracts with more than 

97% purity are needed for this industry. Spinach could provide a low cost feedstock for the health 

supplement industry. 

Acknowledgments 

The authors like to thank the Higher Committee for Education Development in Iraq (HCED) for the 

financial support to perform this work and Stuart Alan Walters of the Department of Plant, Soil and 

Agricultural Systems, College of Agricultural Sciences, Southern Illinois University, who supervised 

the production and harvest of the spinach used in this study. 

Author Contributions 

A.A., designed, carried out and wrote-up the research; D.A.L., supervised and helped design the 

research; and proof read the article; M.K., designed and carried out the MALDI analyses; D.G.W., 

helped design and analyze experiments and edited drafts of the manuscript. 

Conflicts of Interest 

None of the authors have any financial interest of conflict of interest with the results of this study. 

References 

1. Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 

2006, 27, 1–93. 

2. Nassr-Allah, A.A.; Aboul-Enein, A.M.; Aboul-Enein, K.M.; Lightfoot, D.A.; Cocchetto, A.;  

El-Shemy, H.A. Anti-cancer and anti-oxidant activity of some Egyptian medicinal plants. J. Med. 

Plants Res. 2009, 3, 799–808. 

3. El-Shemy, H.A.; Aboul-Enein, K.M.; Lightfoot, D.A. Predicting In Silico Which Mixtures of the 

Natural Products of Plants Might Most Effectively Kill Human Leukemia Cells? Evid. Based 

Complement. Altern. Med. 2013, 2013, 801501, doi:10.1155/2013/801501. 

4. Oliver, J.; Palou, A. Chromatographic determination of carotenoids in foods. J. Chromatogr. A. 

2000, 881, 543–555. 



Molecules 2015, 20 6624 

 

5. West, B.J.; Deng, S. Thin layer chromatography methods for rapid identity testing of Morinda 

citrifolia L. (Noni) fruit and leaf. Adv. J. Food Sci. Technol. 2010, 2, 298–302. 

6. Karnjanawipagul, P.; Nittayanuntawech, W.; Rojsanga, P.; Suntornsuk, L. Analysis of β-carotene 

in carrot by spectrophotometry. Mahidol Univ. J. Pharm. Sci. 2010, 37, 8–16. 

7. Bunea, A.; Andjelkovic, M.; Socaciu, C.; Bobis, O.; Neacsu, M.; Verhe, R.Total and individual 

carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia 

oleracea L.). Food Chem. 2008, 108, 649–656. 

8. Lakshminarayana, R.; Aruna, G.; Sangeetha, R.K.; Bhaskar, N.; Divakar, S.; Baskaran, V. Possible 

degradation/biotransformation of lutein in vitro and in vivo: Isolation and structural elucidation of 

lutein metabolites by HPLC and LC-MS (atmospheric pressure chemical ionization). Free Radic. 

Biol. Med. 2008, 45, 982–993. 

9. Olmedilla, B.; Granado, F.; Blanco, I.; Vaquero, M. Lutein, but notalpha-tocopherol, 

supplementation improves visual function in patients with age-related cataracts: A 2-year double 

blind, placebo-controlled pilot study. Nutrition 2003, 19, 21–24. 

10. Seddon, J.M.; Ajani, U.A.; Sperduto, R.D.; Hiller, R.; Blair, N.; Burton, T.C.; Farber, M.D.; 

Gragoudas, E.S.; Haller, J.; Miller, D.T.; et al. Dietary carotenoids, vitamins A, C, and E, and 

advanced age-related macular degeneration. JAMA 1994, 272, 1413–1420. 

11. Pratt, D.E.; Watts, B.M. The antioxidant activity of vegetable extracts I. flavone aglycones.  

J. Food Sci. 1964, 29, 27–33. 

12. Zeb, A.; Murkovic, M. Thin-layer chromatographic analysis of carotenoids in plant and animal samples. 

JPC-J. Planar Chromat. 2011, 23, 94–103. 

13. Chaowuttikul, C.; Thitikornpong, W.; Palanuvej, C. Quantitative determination of usnic acid 

content in usnea siamensis by TLC-densitometry and TLC image analysis. Res. J. Pharm. Biol. 

Chem. Sci. 2014, 5, 118–125. 

14. Berkov, S.; Pavlov, A. A rapid densitometric method for the analysis of hyoscyamine and 

scopolamine in solanaceous plants and their transformed root cultures. Phytochem. Anal. 2004, 15, 

141–145. 

15. Cieśla, Ł.; Staszek, D.; Kowalska, T.; Waksmundzka-Hajnos, M. The use of TLC-DPPH test with 

image processing to study direct antioxidant activity of phenolic acid fractions of selected 

Lamiaceae family species. J. AOAC Int. 2013, 96, 1228–1232. 

16. Tokusoglu, Ö.; Ünal, M.K.; Yildirim, Z. HPLC-UV and GC-MS charachterization of the flavonol 

aglycons quercetin, kaempferol, and myricetin in tomato pastes and other tomato-based products. 

Acta Chromatogr. 2003, 13, 196–207.  

17. Abdel-gawad, F.M.; Issa, Y.M.; Hussien, E.M.; Ibrahim, M.M.; Barakat, S. Simple and accurate 

RP-HPLC and TLC-Densitometric methods for determination of carvedilol in pharmaceutical 

formulations. Int. J. Res. Pharm. Chem. 2012, 2, 741–748. 

18. Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of ultrasound in food technology: Processing, 

preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. 

19. Nikolova, M.; Berkov, S.; Ivancheva, S. A rapid TLC method for analysis of external flavonoid 

aglycones in plant exudates. Acta Chromatogr. 2004, 14, 110–114. 



Molecules 2015, 20 6625 

 

20. Lee, L.-S.; Lee, N.; Kim, Y.H.; Lee, C.-H.; Hong, S.P.; Jeon, Y.-W.; Kim, Y.-E. Optimization of 

ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology. 

Molecules 2013, 18, 13530–13545. 

21. Trinh, T.K.; Kang, L. Application of response surface method as an experimental design to optimize 

coagulation tests. Environ. Eng. Res. 2010, 15, 63–70. 

22. Zhao, Y.; Hou, Y.; Tang, G.; Cai, E.; Liu, S.; Yang, H.; Zhang, L.; Wang, S. Optimization of 

ultrasonic extraction of phenolic compounds from Epimedium brevicornum maxim using response 

surface methodology and evaluation of its antioxidant activities in vitro. J. Anal. Methods Chem. 

2014, 2014, 864654. 

23. Palma, M.; Taylor, L.T. Extraction of polyphenolic compounds from grape seeds with near critical 

carbon dioxide. J. Chromatogr. A 1999, 849, 117–124. 

24. Karabegović, I.T.; Stojičević, S.S.; Veličković, D.T.; Nikolić, N.Č.; Lazić, M.L. Optimization of 

microwave-assisted extraction of cherry laurel fruit. Sep. Sci. Technol. 2014, 49, 416–423. 

25. Rebecca, L.J.; Sharmila, S.; Paul Das, M.; Seshiah, C. Extraction and purification of carotenoids 

from vegetables. J. Chem. Pharm. Res. 2014, 6, 594–598. 

26. Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface 

methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. 

27. Altemimi, A.; Choudhary, R.; Watson, D.G.; Lightfoot, D.A. Effects of ultrasonic treatments on the 

polyphenol and antioxidant content of spinach extracts. Ultrason. Sonochem. 2015, 24, 247–255. 

28. Harbone, J. Phytochemical Method, 2nd ed.; Chapman Hall: New York, NY, USA, 1986. 

29. Jaime, L.; Mendiola, J.A.; Herrero, M.; Soler-Rivas, C.; Santoyo, S.; Señorans, F.J.; Ibáñez, E. 

Separation and characterization of antioxidants from Spirulina platensis microalga combining 

pressurized liquid extraction, TLC, and HPLC-DAD. J. Sep. Sci. 2005, 28, 2111–2119. 

30. Khachik, F.; Beltsville, M. Process for Extraction, Purification of Lutein, Zeaxanthin and Rare 

Carotenoids from Marigold Flowers and Plants. US Patent 6,262,284, 17 July 2001. 

31. Alisa, P.; Helen R.; Elizabeth, J.J. Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and 

corn and egg products. J. Food Compos. Anal. 2009, 22, 9–15. 

32. Vechpanich, J.; Shotipruk, A. Recovery of free lutein from Tagetes erecta: Determination of 

suitable saponification and crystallization conditions. Sep. Sci. Technol. 2011, 46, 265–271. 

Sample Availability: Samples of the extracts are available from the authors. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


	Southern Illinois University Carbondale
	OpenSIUC
	Spring 4-17-2015

	Employing Response Surface Methodology for the Optimization of Ultrasound Assisted Extraction of Lutein and β-Carotene from Spinach
	David A. Lightfoot
	Ammar Altemimi
	Mary Kinsel
	Dennis G. Watson
	Recommended Citation


	

