3,720 research outputs found
Thermal Conductivity of Nickel and Uranium
The thermal conductivity of a metal can be measured at any temperature by a method in which the conductivity of the metal under investigation is compared with the known conductivity of some metal chosen as a standard (1). The rate of heat flow, Q, in a cylindrical specimen of unknown conductivity, is given by the equation Q = - K1AG1, where Ki is the unknown thermal conductivity, A is the cross-sectional area, and G1 = (ΔT/Ax)1 is the temperature gradient. If a cylindrical bar of equal cross-sectional area and known thermal conductivity, K2, is placed in series with the specimen so that the rate of heat flow is the same in both bars, we have Q = -K2AG2, where G2 = (ΔT/ΔX)2 is the temperature gradient in the standard sample. From these two expressions for Q, the unknown thermal conductivity, K1 = (G2/G1)K2, can be found if the temperature gradients in the two rods are measured. In principle, the comparison method is simple but, in practice, complications may arise at high temperatures in providing good thermal contacts, in preventing radial heat losses, and in making reliable temperature measurements. The method has not, therefore, been characterized by high precision at elevated temperatures. The purpose of this investigation was (a) to develop improvements in the apparatus for measuring thermal conductivities of metals at high temperatures by the comparison method, and (b) to determine the thermal conductivities of nickel and uranium in the temperature range 100° C. to 650° C. by the comparison method
The coordination of cell growth during fission yeast mating requires Ras1-GTP hydrolysis
The spatial and temporal control of polarity is fundamental to the survival of all organisms. Cells define their polarity using highly conserved mechanisms that frequently rely upon the action of small GTPases, such as Ras and Cdc42. Schizosaccharomyces pombe is an ideal system with which to study the control of cell polarity since it grows from defined tips using Cdc42-mediated actin remodeling. Here we have investigated the importance of Ras1-GTPase activity for the coordination of polarized cell growth during fission yeast mating. Following pheromone stimulation, Ras1 regulates both a MAPK cascade and the activity of Cdc42 to enable uni-directional cell growth towards a potential mating partner. Like all GTPases, when bound to GTP, Ras1 adopts an active conformation returning to an inactive state upon GTP-hydrolysis, a process accelerated through interaction with negative regulators such as GAPs. Here we show that, at low levels of pheromone stimulation, loss of negative regulation of Ras1 increases signal transduction via the MAPK cascade. However, at the higher concentrations observed during mating, hyperactive Ras1 mutations promote cell death. We demonstrate that these cells die due to their failure to coordinate active Cdc42 into a single growth zone resulting in disorganized actin deposition and unsustainable elongation from multiple tips. These results provide a striking demonstration that the deactivation stage of Ras signaling is fundamentally important in modulating cell polarity
The dependence of the EIT wave velocity on the magnetic field strength
"EIT waves" are a wavelike phenomenon propagating in the corona, which were
initially observed in the extreme ultraviolet (EUV) wavelength by the EUV
Imaging Telescope (EIT). Their nature is still elusive, with the debate between
fast-mode wave model and non-wave model. In order to distinguish between these
models, we investigate the relation between the EIT wave velocity and the local
magnetic field in the corona. It is found that the two parameters show
significant negative correlation in most of the EIT wave fronts, {\it i.e.},
EIT wave propagates more slowly in the regions of stronger magnetic field. Such
a result poses a big challenge to the fast-mode wave model, which would predict
a strong positive correlation between the two parameters. However, it is
demonstrated that such a result can be explained by the fieldline stretching
model, \emph{i.e.,} that "EIT waves" are apparently-propagating brightenings,
which are generated by successive stretching of closed magnetic field lines
pushed by the erupting flux rope during coronal mass ejections (CMEs).Comment: 11 pages, 8 figures, accepted for publication in Solar Phy
N=2 solutions of massive type IIA and their Chern-Simons duals
We find explicit AdS4 solutions of massive type IIA with N=2 supersymmetry
obtained deforming with a Roman mass the type IIA supersymmetric reduction of
the M theory background AdS4 times M111. The family of solutions have SU(3)
times SU(3) structure and isometry SU(3) times U(1)^2. They are conjectured to
be dual to three-dimensional N=2 Chern-Simons theories with generic
Chern-Simons couplings and gauge group ranks.Comment: 20 pages, 1 figure, comments and references adde
Inverse algorithm and M2-brane theories
Recent paper arXiv:1103.0553 studied the quiver gauge theories on coincident
branes on a singular toric Calabi-Yau 4-folds which are complex cone over
toric Fano 3-folds. There are 18 toric Fano manifolds but only 14 toric Fano
were obtained from the forward algorithm. We attempt to systematize the inverse
algorithm which helps in obtaining quiver gauge theories on -branes from
the toric data of the Calabi-Yau 4-folds. In particular, we obtain quiver gauge
theories on coincident -branes corresponding to the remaining 4 toric Fano
3-folds. We observe that these quiver gauge theories cannot be given a dimer
tiling presentation.Comment: JHEP format 1+26 pages, 4 figures, minor corrections, to appear in
JHE
M2-Branes and Fano 3-folds
A class of supersymmetric gauge theories arising from M2-branes probing
Calabi-Yau 4-folds which are cones over smooth toric Fano 3-folds is
investigated. For each model, the toric data of the mesonic moduli space is
derived using the forward algorithm. The generators of the mesonic moduli space
are determined using Hilbert series. The spectrum of scaling dimensions for
chiral operators is computed.Comment: 128 pages, 39 figures, 42 table
Brane Tilings and Specular Duality
We study a new duality which pairs 4d N=1 supersymmetric quiver gauge
theories. They are represented by brane tilings and are worldvolume theories of
D3 branes at Calabi-Yau 3-fold singularities. The new duality identifies
theories which have the same combined mesonic and baryonic moduli space,
otherwise called the master space. We obtain the associated Hilbert series
which encodes both the generators and defining relations of the moduli space.
We illustrate our findings with a set of brane tilings that have reflexive
toric diagrams.Comment: 42 pages, 16 figures, 5 table
Baryonic symmetries and M5 branes in the AdS_4/CFT_3 correspondence
We study U(1) symmetries dual to Betti multiplets in the AdS_4/CFT_3
correspondence for M2 branes at Calabi-Yau four-fold singularities. Analysis of
the boundary conditions for vector fields in AdS_4 allows for a choice where
wrapped M5 brane states carrying non-zero charge under such symmetries can be
considered. We begin by focusing on isolated toric singularities without
vanishing six-cycles, and study in detail the cone over Q^{111}. The boundary
conditions considered are dual to a CFT where the gauge group is U(1)^2 x
SU(N)^4. We find agreement between the spectrum of gauge-invariant
baryonic-type operators in this theory and wrapped M5 brane states. Moreover,
the physics of vacua in which these symmetries are spontaneously broken
precisely matches a dual gravity analysis involving resolutions of the
singularity, where we are able to match condensates of the baryonic operators,
Goldstone bosons and global strings. We also argue more generally that theories
where the resolutions have six-cycles are expected to receive non-perturbative
corrections from M5 brane instantons. We give a general formula relating the
instanton action to normalizable harmonic two-forms, and compute it explicitly
for the Q^{222} example. The holographic interpretation of such instantons is
currently unclear.Comment: 92 pages, 10 figure
Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"
``EIT waves" are large-scale coronal bright fronts (CBFs) that were first
observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging
Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}.
Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that
propagate pseudo-radially across the solar disk at velocities of 100--700 km
s with front widths of 50-100 Mm. As their speed is greater than the
quiet coronal sound speed (200 km s) and comparable to the
local Alfv\'{e}n speed (1000 km s), they were initially
interpreted as fast-mode magnetoacoustic waves ().
Their propagation is now known to be modified by regions where the magnetosonic
sound speed varies, such as active regions and coronal holes, but there is also
evidence for stationary CBFs at coronal hole boundaries. The latter has led to
the suggestion that they may be a manifestation of a processes such as Joule
heating or magnetic reconnection, rather than a wave-related phenomena. While
the general morphological and kinematic properties of CBFs and their
association with coronal mass ejections have now been well described, there are
many questions regarding their excitation and propagation. In particular, the
theoretical interpretation of these enigmatic events as magnetohydrodynamic
waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure
- …