141 research outputs found
Public Release of RELXILL_NK: A Relativistic Reflection Model for Testing Einstein's Gravity
We present the public release version of relxill_nk, an X-ray reflection
model for testing the Kerr hypothesis and general relativity. This model
extends the relxill model that assumes the black hole spacetime is described by
the Kerr metric. We also present relxilllp_nk, the first non-Kerr X-ray
reflection model with a lamppost corona configuration, as well as all other
models available in the full relxill_nk package. In all models the relevant
relativistic effects are calculated through a general relativistic ray-tracing
code that can be applied to any well-behaved, stationary, axisymmetric, and
asymptotically flat black hole spacetime. We show that the numerical error
introduced by using a ray-tracing code is not significant as compared with the
observational error present in current X-ray reflection spectrum observations.
In addition, we present the reflection spectrum for the Johannsen metric as
calculated by relxill_nk.Comment: 15 pages, 8 figures. v2: refereed version. Code and documentation
available at
http://www.physics.fudan.edu.cn/tps/people/bambi/Site/RELXILL_NK.html and at
http://www.tat.physik.uni-tuebingen.de/~nampalliwar/relxill_nk
Testing the Kerr metric with X-ray Reflection Spectroscopy of Mrk 335 Suzaku data
Einstein's gravity has undergone extensive tests in the weak field
gravitational limit, with results in agreement with theoretical predictions.
There exist theories beyond general relativity (GR) which modify gravity in the
strong field regime but agree with GR in the weak field. Astrophysical black
holes are believed to be described by the Kerr metric and serve as suitable
candidates to test strong gravity with electromagnetic radiation. We perform
such a test by fitting one Suzaku dataset of the narrow-line Seyfert 1 (NLS1)
galaxy Mrk 335 with X-ray reflection spectroscopy, using the Johannsen metric
to model the black hole spacetime and test for deviations from Kerr. We find
the data is best modeled with a hybrid model that includes both partial
covering absorption and a reflection component. This is the first time such a
model has been proposed for a high-flux (low reflection) Mrk 335 dataset. We
constrain the Johannsen deformation parameter to
, and the
parameter to , both at the 99%
confidence level. Although additional solutions at large deviations from the
Kerr metric show statistical similarity with the ones above, further analysis
suggests these solutions may be manifestations of uncertainties beyond our
control and do not represent the data. Hence, our results are in agreement with
the idea that the supermassive compact object at the center of Mrk 335 is
described by the Kerr metric.Comment: 13 pages, 9 figures. v2: refereed versio
Testing General Relativity with X-ray reflection spectroscopy: The Konoplya-Rezzolla-Zhidenko parametrization
X-ray reflection spectroscopy is a promising technique for testing general
relativity in the strong field regime, as it can be used to test the Kerr black
hole hypothesis. In this context, the parametrically deformed black hole
metrics proposed by Konoplya, Rezzolla \& Zhidenko (Phys. Rev. D93, 064015,
2016) form an important class of non-Kerr black holes. We implement this class
of black hole metrics in \textsc{relxill\_nk}, which is a framework we have
developed for testing for non-Kerr black holes using X-ray reflection
spectroscopy. We perform a qualitative analysis of the effect of the leading
order strong-field deformation parameters on typical observables like the
innermost stable circular orbits and the reflection spectra. We also present
the first X-ray constraints on some of the deformation parameters of this
metric, using \textit{Suzaku} data from the supermassive black hole in Ark~564,
and compare them with those obtained (or expected) from other observational
techniques like gravitational waves and black hole imaging.Comment: Minor updates. Published at Phys. Rev. D 102, 124071 (2020
A redshifted Fe K line from the unusual gamma-ray source PMN J1603-4904
Multiwavelength observations have revealed the highly unusual properties of
the gamma-ray source PMN J1603-4904, which are difficult to reconcile with any
other well established gamma-ray source class. The object is either a very
atypical blazar or compact jet source seen at a larger angle to the line of
sight. In order to determine the physical origin of the high-energy emission
processes in PMN J1603-4904, we study the X-ray spectrum in detail. We
performed quasi-simultaneous X-ray observations with XMM-Newton and Suzaku in
2013 September, resulting in the first high signal-to-noise X-ray spectrum of
this source. The 2-10 keV X-ray spectrum can be well described by an absorbed
power law with an emission line at 5.440.05 keV (observed frame).
Interpreting this feature as a K{\alpha} line from neutral iron, we determine
the redshift of PMN J1603-4904 to be z=0.180.01, corresponding to a
luminosity distance of 87254 Mpc. The detection of a redshifted X-ray
emission line further challenges the original BL Lac classification of PMN
J1603-4904. This result suggests that the source is observed at a larger angle
to the line of sight than expected for blazars, and thus the source would add
to the elusive class of gamma-ray loud misaligned-jet objects, possibly a
{\gamma}-ray bright young radio galaxy.Comment: 5 pages, 1 figure, A&A accepte
Testing the Kerr black hole hypothesis using X-ray reflection spectroscopy and a thin disk model with finite thickness
X-ray reflection spectroscopy is a powerful tool for probing the strong gravity region of black holes and can be used for testing general relativity in the strong field regime. Simplifications of the available relativistic reflection models limit the capability of performing accurate measurements of the properties of black holes. In this paper, we present an extension of the model relxill_nk in which the accretion disk has a finite thickness rather than being infinitesimally thin. We employ the accretion disk geometry proposed by Taylor & Reynolds and we construct relativistic reflection models for different values of the mass accretion rate of the black hole. We apply the new model to high-quality Suzaku data of the X-ray binary GRS 1915+105 to explore the impact of the thickness of the disk on tests of the Kerr metric
- …