91 research outputs found

    Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s

    Get PDF
    A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows the strong coupling constant alpha_s and the gluon distribution to be simultaneously determined. A value of alpha _s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with an additional theoretical uncertainty of about +-0.005, mainly due to the uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table

    On the Rise of the Proton Structure Function F2_2 Towards Low x

    Get PDF
    A measurement of the derivative (d ln F_2 / d lnx)_(Q^2)= -lambda(x,Q^2) of the proton structure function F_2 is presented in the low x domain of deeply inelastic positron-proton scattering. For 5*10^(-5)=1.5 GeV^2, lambda(x,Q^2) is found to be independent of x and to increase linearly with ln(Q^2)

    Exclusive ρ{variant}0 production in deep inelastic muon-proton scattering

    No full text
    Exclusive ρ{variant}0 production has been measured in 120, 200 and 280 GeV muon-proton interactions at high Q2 (1 GeV2 < Q2 < 25 GeV2) and W (6 GeV < W < 19 GeV). The photoproduction cross section decreases as 1/Q4. A shallow t distribution, typical of a hard scattering process is observed and the ρ{variant}0 is found to be dominantly in the helicity zero spin state. The ρ{variant}0s are mainly produced by transverse photons and s-channel helicity conservation seems to be invalid. The data cannot be described by the vector meson dominance model. These data show that at high Q2 even exclusive ρ{variant}0 muoproduction is a hard scattering process and that the soft hadron-like properties of the photon have disappeared. © 1985

    The Aerosphere as a Network Connector of Organisms and Their Diseases

    Get PDF
    Aeroecological processes, especially powered flight of animals, can rapidly connect biological communities across the globe. This can have profound consequences for evolutionary diversification, energy and nutrient transfers, and the spread of infectious diseases. The latter is of particular consequence for human populations, since migratory birds are known to host diseases which have a history of transmission into domestic poultry or even jumping to human hosts. In this chapter, we present a scenario under which a highly pathogenic avian influenza (HPAI) strain enters North America from East Asia via postmolting waterfowl migration. We use an agent-based model (ABM) to simulate the movement and disease transmission among 106 generalized waterfowl agents originating from ten molting locations in eastern Siberia, with the HPAI seeded in only ~102 agents at one of these locations. Our ABM tracked the disease dynamics across a very large grid of sites as well as individual agents, allowing us to examine the spatiotemporal patterns of change in virulence of the HPAI infection as well as waterfowl host susceptibility to the disease. We concurrently simulated a 12-station disease monitoring network in the northwest USA and Canada in order to assess the potential efficacy of these sites to detect and confirm the arrival of HPAI. Our findings indicated that HPAI spread was initially facilitated but eventually subdued by the migration of host agents. Yet, during the 90-day simulation, selective pressures appeared to have distilled the HPAI strain to its most virulent form (i.e., through natural selection), which was counterbalanced by the host susceptibility being conversely reduced (i.e., through genetic predisposition and acquired immunity). The monitoring network demonstrated wide variation in the utility of sites; some were clearly better at providing early warnings of HPAI arrival, while sites further from the disease origin exposed the selective dynamics which slowed the spread of the disease albeit with the result of passing highly virulent strains into southern wintering locales (where human impacts are more likely). Though the ABM presented had generalized waterfowl migration and HPAI disease dynamics, this exercise demonstrates the power of such simulations to examine the extremely large and complex processes which comprise aeroecology. We offer insights into how such models could be further parameterized to represent HPAI transmission risks as well as how ABMs could be applied to other aeroecological questions pertaining to individual-based connectivity
    corecore