323 research outputs found

    Editorial.

    Get PDF

    Editorial.

    Get PDF

    Editorial.

    Get PDF

    Editorial - In eigener Sache.

    Get PDF

    Reinhard Gaedike zum 65. Geburtstag.

    Get PDF
    Petersen, Günther, Groll, Eckhard K., Dathe, Holger H. (2008): Reinhard Gaedike zum 65. Geburtstag. Beiträge Zur Entomologie = Contributions to Entomology 58: 3-13, DOI: 10.21248/contrib.entomol.58.1.3-13, URL: http://dx.doi.org/10.21248/contrib.entomol.58.1.3-1

    Molecular analysis of two novel missense mutations in the GDF5 proregion that reduce protein activity and are associated with brachydactyly type C

    Get PDF
    Growth and differentiation factor 5 (GDF5) plays a central role in bone and cartilage development by regulating the proliferation and differentiation of chondrogenic tissue. GDF5 is synthesized as a preproprotein. The biological function of the proregion comprising 354 residues is undefined. We identified two families with a heterozygosity for the novel missense mutations p.T201P or p.L263P located in the proregion of GDF5. The patients presented with dominant brachydactyly type C characterized by the shortening of skeletal elements in the distal extremities. Both mutations gave rise to decreased biological activity in in vitro analyses. The variants reduced the GDF5-induced activation of SMAD signaling by the GDF5 receptors BMPR1A and BMPR1B. Ectopic expression in micromass cultures yielded relatively low protein levels of the variants and showed diminished chondrogenic activity as compared to wild-type GDF5. Interestingly, stimulation of micromass cells with recombinant human proGDF5(T201P) and proGDF5(L263P) revealed their reduced chondrogenic potential compared to the wild-type protein. Limited proteolysis of the mutant recombinant proproteins resulted in a fragment pattern profoundly different from wild-type proGDF5. Modeling of a part of the GDF5 proregion into the known three-dimensional structure of TGFbeta1 latency-associated peptide revealed that the homologous positions of both mutations are conserved regions that may be important for the folding of the mature protein or the assembly of dimeric protein complexes. We hypothesize that the missense mutations p.T201P and p.L263P interfere with the protein structure and thereby reduce the amount of fully processed, biologically active GDF5, finally causing the clinical loss of function phenotype

    Annexin A2 mediates apical trafficking of renal Na(+)-K(+)-2Cl(-)-cotransporter

    Get PDF
    The furosemide-sensitive Na(+)-K(+)-2Cl(-)-cotransporter (NKCC2) is responsible for urine concentration, and helps maintain systemic salt homeostasis. Its activity depends on trafficking to, and insertion into, the apical membrane, as well as on phosphorylation of conserved N-terminal serine and threonine residues. Vasopressin (AVP), signaling via PKA and other kinases, activates NKCC2. Association of NKCC2 with lipid rafts facilitates its AVP-induced apical translocation and activation at the surface. Lipid raft microdomains typically serve as platforms for membrane proteins to facilitate their interactions with other proteins, but little is known about partners that interact with NKCC2. Yeast two-hybrid screening identified an interaction between NKCC2 and the cytosolic protein, annexin A2 (AnxA2). Annexins mediate lipid raft-dependent trafficking of transmembrane proteins, including the AVP-regulated water channel, aquaporin 2. Here, we demonstrate that AnxA2, which binds to phospholipids in a Ca(2+)-dependent manner and may organize microdomains, is co-distributed with NKCC2 to promote its apical translocation in response to AVP stimulation and low chloride hypotonic stress. NKCC2 and AnxA2 interact in a phosphorylation-dependent manner. Phosphomimetic AnxA2 carrying a mutant, Src-dependent phosphoacceptor (AnxA2-Y24D-GFP), enhanced surface expression and raft association of NKCC2 by 5-fold upon AVP stimulation, whereas PKC-dependent AnxA2-S26D-GFP did not. As the AnxA2 effect involved only non-phosphorylated NKCC2, it appears to affect NKCC2 trafficking. Overexpression or knockdown experiments further supported the role of AnxA2 in the apical translocation and surface expression of NKCC2. In summary, this study identifies AnxA2 as a lipid raft-associated trafficking factor for NKCC2 and provides mechanistic insight into the regulation of this essential cotransporter

    Visualizing brain inflammation with a shingled-leg radio-frequency head probe for (19)F/(1)H MRI

    Get PDF
    Magnetic resonance imaging (MRI) provides the opportunity of tracking cells in vivo. Major challenges in dissecting cells from the recipient tissue and signal sensitivity constraints albeit exist. In this study, we aimed to tackle these limitations in order to study inflammation in autoimmune encephalomyelitis. We constructed a very small dual-tunable radio frequency (RF) birdcage probe tailored for (19)F (fluorine) and (1)H (proton) MR mouse neuroimaging. The novel design eliminated the need for extra electrical components on the probe structure and afforded a uniform -field as well as good SNR. We employed fluorescently-tagged (19)F nanoparticles and could study the dynamics of inflammatory cells between CNS and lymphatic system during development of encephalomyelitis, even within regions of the brain that are otherwise not easily visualized by conventional probes. (19)F/(1)H MR Neuroimaging will allow us to study the nature of immune cell infiltration during brain inflammation over an extensive period of time

    Small Changes in the Primary Structure of Transportan 10 Alter the Thermodynamics and Kinetics of its Interaction with Phospholipid Vesicles

    Get PDF
    ABSTRACT: The kinetics and thermodynamics of binding of transportan 10 (tp10) and four of its variants to phospholipid vesicles, and the kinetics of peptide-induced dye efflux, were compared. Tp10 is a 21-residue, amphipathic, cationic, cell-penetrating peptide similar to helical antimicrobial peptides. The tp10 variants examined include amidated and free peptides, and replacements of tyrosine by tryptophan. Carboxy-terminal amidation or substitution of tryptophan for tyrosine enhance binding and activity. The Gibbs energies of peptide binding to membranes determined experimentally and calculated from the interfacial hydrophobicity scale are in good agreement. The Gibbs energy for insertion into the bilayer core was calculated using hydrophobicity scales of residue transfer from water to octanol and to the membrane/ water interface. Peptide-induced efflux becomes faster as the Gibbs energies for binding and insertion of the tp10 variants decrease. If anionic lipids are included, binding and efflux rate increase, as expected because all tp10 variants are cationic and an electrostatic component is added. Whether the most important effect of peptide amidation is the change in charge or an enhancement of helical structure, however, still needs to be established. Nevertheless, it is clear that the changes in efflux rate reflect the differences in the thermodynamics of binding and insertion of the free and amidated peptide groups. We have recently reported a detailed investigation (1) o
    corecore