13 research outputs found

    Model-completion of varieties of co-Heyting algebras

    Get PDF
    It is known that exactly eight varieties of Heyting algebras have a model-completion, but no concrete axiomatisation of these model-completions were known by now except for the trivial variety (reduced to the one-point algebra) and the variety of Boolean algebras. For each of the six remaining varieties we introduce two axioms and show that 1) these axioms are satisfied by all the algebras in the model-completion, and 2) all the algebras in this variety satisfying these two axioms have a certain embedding property. For four of these six varieties (those which are locally finite) this actually provides a new proof of the existence of a model-completion, this time with an explicit and finite axiomatisation.Comment: 28 page

    Cell decomposition and classification of definable sets in p-optimal fields

    Get PDF
    We prove that for p-optimal fields (a very large subclass of p-minimal fields containing all the known examples) a cell decomposition theorem follows from methods going back to Denef’s paper [7]. We derive from it the existence of definable Skolem functions and strong p-minimality. Then we turn to strongly p-minimal fields satisfying the Extreme Value Property—a property which in particular holds in fields which are elementarily equivalent to a p-adic one. For such fields K, we prove that every definable subset of K × K d whose fibers over K are inverse images by the valuation of subsets of the value group is semialgebraic. Combining the two we get a preparation theorem for definable functions on p-optimal fields satisfying the Extreme Value Property, from which it follows that infinite sets definable over such fields are in definable bijection iff they have the same dimension

    Pseudo-algebraically closed rings

    No full text
    corecore