104 research outputs found

    Incommensurate magnetic ordering in Cu2Te2O5X2Cu_2 Te_2 O_5 X_2 (X=Cl,Br) studied by neutron diffraction

    Full text link
    We present the results of the first neutron powder and single crystal diffraction studies of the coupled spin tetrahedra systems {\CuTeX} (X=Cl, Br). Incommensurate antiferromagnetic order with the propagation vectors {\bf{k}_{Cl}}\approx[0.150,0.422,\half], {\bf{k}_{Br}}\approx[0.158,0.354,\half] sets in below TNT_{N}=18 K for X=Cl and 11 K for X=Br. No simple collinear antiferromagnetic or ferromagnetic arrangements of moments within Cu2+{}^{2+} tetrahedra fit these observations. Fitting the diffraction data to more complex but physically reasonable models with multiple helices leads to a moment of 0.67(1)μB\mu_B/Cu2+{}^{2+} at 1.5 K for the Cl-compound. The reason for such a complex ground state may be geometrical frustration of the spins due to the intra- and inter-tetrahedral couplings having similar strengths. The magnetic moment in the Br- compound, calculated assuming it has the same magnetic structure as the Cl compound, is only 0.51(5)μB\mu_B/Cu2+{}^{2+} at 1.5 K. In neither compound has any evidence for a structural transition accompanying the magnetic ordering been found

    Origin and stability of the dipolar response in a family of tetragonal tungsten bronze relaxors

    Full text link
    A new family of relaxor dielectrics with the tetragonal tungsten bronze structure (nominal composition Ba6M3+Nb9O30, M3+ = Ga, Sc or In) were studied using dielectric spectroscopy to probe the dynamic dipole response and correlate this with the crystal structure as determined from powder neutron diffraction. Independent analyses of real and imaginary parts of the complex dielectric function were used to determine characteristic temperature parameters, TVF, and TUDR, respectively. In each composition both these temperatures correlated with the temperature of maximum crystallographic strain, Tc/a determined from diffraction data. The overall behaviour is consistent with dipole freezing and the data indicate that the dipole stability increases with increasing M3+ cation size as a result of increased tetragonality of the unit cell. Crystallographic data suggests that these materials are uniaxial relaxors with the dipole moment predominantly restricted to the B1 cation site in the structure. Possible origins of the relaxor behaviour are discussed.Comment: Main article 32 pages, 8 figures; Supplementary data 24 pages, 4 figure

    Commensurate structural modulation in the charge- and orbitally-ordered phase of the quadruple perovskite (NaMn3_3)Mn4_4O12_{12}

    Full text link
    By means of synchrotron x-ray and electron diffraction, we studied the structural changes at the charge order transition TCOT_{CO}=176 K in the mixed-valence quadruple perovskite (NaMn3_3)Mn4_4O12_{12}. Below TCOT_{CO} we find satellite peaks indicating a commensurate structural modulation with the same propagation vector q =(1/2,0,-1/2) of the CE magnetic order that appears at low temperature, similarly to the case of simple perovskites like La0.5_{0.5}Ca0.5_{0.5}MnO3_3. In the present case, the modulated structure together with the observation of a large entropy change at TCOT_{CO} gives evidence of a rare case of full Mn3+^{3+}/Mn4+^{4+} charge and orbital order consistent with the Goodenough-Kanamori model.Comment: Accepted for publication in Phys. Rev. B Rapid Communication

    Magnetic order and the electronic ground state in the pyrochlore iridate Nd2Ir2O7

    Full text link
    We report a combined muon spin relaxation/rotation, bulk magnetization, neutron scattering, and transport study of the electronic properties of the pyrochlore iridate Nd2Ir2O7. We observe the onset of strongly hysteretic behavior in the temperature dependent magnetization below 120 K, and an abrupt increase in the temperature dependent resistivity below 8 K. Zero field muon spin relaxation measurements show that the hysteretic magnetization is driven by a transition to a magnetically disordered state, and that below 8 K a complex magnetically ordered ground state sets in, as evidenced by the onset of heavily damped spontaneous muon precession. Our measurements point toward the absence of a true metal-to-insulator phase transition in this material and suggest that Nd2Ir2O7 lies either within or on the metallic side of the boundary of the Dirac semimetal regime within its topological phase diagram.Comment: 21 pages, 7 figure

    Incommensurate magnetic ordering in Cu2Te2O5X2 (X=Cl, Br) studied by single crystal neutron diffraction

    Full text link
    Polarized and unpolarized neutron diffraction studies have been carried out on single crystals of the coupled spin tetrahedra systems Cu2Te2O5X2 (X=Cl, Br). A model of the magnetic structure associated with the propagation vectors k'Cl ~ -0.150,0.422,1/2 and k'Br ~ -0.172,0.356,1/2 and stable below TN=18 K for X=Cl and TN=11 K for X=Br is proposed. A feature of the model, common to both the bromide and chloride, is a canted coplanar motif for the 4 Cu2+ spins on each tetrahedron which rotates on a helix from cell to cell following the propagation vector. The Cu2+magnetic moment determined for X=Br, 0.395(5)muB, is significantly less than for X=Cl, 0.88(1)muB at 2K. The magnetic structure of the chloride associated with the wave-vector k' differs from that determined previously for the wave vector k~0.150,0.422,1/2 [O. Zaharko et.al. Phys. Rev. Lett. 93, 217206 (2004)]

    Muon spin rotation and neutron scattering study of the non-centrosymmetric tetragonal compound CeAuAl3

    Get PDF
    We have investigated the non-centrosymmetric tetragonal heavy-fermion compound CeAuAl3 using muon spin rotation (muSR), neutron diffraction (ND) and inelastic neutron scattering (INS) measurements. We have also revisited the magnetic, transport and thermal properties. The magnetic susceptibility reveals an antiferromagnetic transition at 1.1 K with a possibility of another magnetic transition near 0.18 K. The heat capacity shows a sharp lambda-type anomaly at 1.1 K in zero-filed, which broadens and moves to higher temperature in applied magnetic field. Our zero-field muSR and ND measurements confirm the existence of a long-range magnetic ground state below 1.2 K. Further the ND study reveals an incommensurate magnetic ordering with a magnetic propagation vector k = (0, 0, 0.52) and a spiral structure of Ce moments coupled ferromagnetically within the ab-plane. Our INS study reveals the presence of two well-defined crystal electric field (CEF) excitations at 5.1 meV and 24.6 meV in the paramagnetic phase of CeAuAl3 which can be explained on the basis of the CEF theory. Furthermore, low energy quasi-elastic excitations show a Gaussian line shape below 30 K compared to a Lorentzian line shape above 30 K, indicating a slowdown of spin fluctuation below 30 K. We have estimated a Kondo temperature of TK=3.5 K from the quasi-elastic linewidth, which is in good agreement with that estimated from the heat capacity. This study also indicates the absence of any CEF-phonon coupling unlike that observed in isostructural CeCuAl3. The CEF parameters, energy level scheme and their wave functions obtained from the analysis of INS data explain satisfactorily the single crystal susceptibility in the presence of two-ion anisotropic exchange interaction in CeAuAl3.Comment: 28 pages and 17 figure

    Spontaneous magnetization above TC in polycrystalline La0.7 Ca0.3 MnO3 and La0.7 Ba0.3 MnO3

    Get PDF
    In the present work, spontaneous magnetization is observed in the inverse magnetic susceptibility of La0.7Ca0.3MnO3 and La0.7Ba0.3MnO3 compounds above TC up to a temperature T*. From information gathered from neutron diffraction, dilatometry, and high-field magnetization data, we suggest that T* is related to the transition temperature of the low-temperature (high magnetic field) magnetic phase. In the temperature region between T* and TC, the application of a magnetic field drives the system from the high-temperature to low-temperature magnetic phases, the latter possessing a higher magnetization. © 2014 American Physical Society

    Incommensurate magnetism in the coupled spin tetrahedra system Cu₂Te₂O₅Cl₂

    No full text
    Neutron scattering studies on powder and single crystals have provided new evidences for unconventional magnetism in Cu₂Te₂O₅Cl₂. The compound is built from tetrahedral clusters of S = 1/2 Cu²⁺ spins located on a tetragonal lattice. Magnetic ordering, emerging at TN = 18.2 K, leads to a very complex multi-domain, most likely degenerate, ground state, which is characterized by an incommensurate (ICM) wave vector k ~ [0.15, 0.42, 1/2]. The Cu²⁺ ions carry a magnetic moment of 0.67(1) μB/Cu²⁺ at 1.5 K and form a four helices spin arrangement with two canted pairs within the tetrahedra. A domain redistribution is observed when a magnetic field is applied in the tetragonal plane (Hc ≈ 0.5 T), but not for H||c up to 4 T. The excitation spectrum is characterized by two well-defined modes, one completely dispersionless at 6 meV, the other strongly dispersing to a gap of 2 meV. The reason for such complex ground state and spin excitations may be geometrical frustration of the Cu²⁺ spins within the tetrahedra, intra- and inter-tetrahedral couplings having similar strengths and strong Dzyaloshinski–Moriya anisotropy. Candidates for the dominant intra- and inter-tetrahedral interactions are proposed
    corecore