344 research outputs found
Enhancement of the Nernst effect by stripe order in a high-Tc superconductor
The Nernst effect in metals is highly sensitive to two kinds of phase
transition: superconductivity and density-wave order. The large positive Nernst
signal observed in hole-doped high-Tc superconductors above their transition
temperature Tc has so far been attributed to fluctuating superconductivity.
Here we show that in some of these materials the large Nernst signal is in fact
caused by stripe order, a form of spin / charge modulation which causes a
reconstruction of the Fermi surface. In LSCO doped with Nd or Eu, the onset of
stripe order causes the Nernst signal to go from small and negative to large
and positive, as revealed either by lowering the hole concentration across the
quantum critical point in Nd-LSCO, or lowering the temperature across the
ordering temperature in Eu-LSCO. In the latter case, two separate peaks are
resolved, respectively associated with the onset of stripe order at high
temperature and superconductivity near Tc. This sensitivity to Fermi-surface
reconstruction makes the Nernst effect a promising probe of broken symmetry in
high-Tc superconductors
Origin of Drastic Change of Fermi Surface and Transport Anomalies in CeRhIn5 under Pressure
The mechanism of drastic change of Fermi surfaces as well as transport
anomalies near P=Pc=2.35 GPa in CeRhIn5 is explained theoretically. The key
mechanism is pointed out to be the interplay of magnetic order and Ce-valence
fluctuations. We show that the antiferromagnetic state with "small" Fermi
surfaces changes to the paramagnetic state with "large" Fermi surfaces with
huge enhancement of effective mass of electrons with keeping finite c-f
hybridization. This explains the drastic change of the de Haas-van Alphen
signals. Furthermore, it is also consistent with the emergence of T-linear
resistivity simultaneous with the residual resistivity peak at P=Pc in CeRhIn5.Comment: 5 pages, 3 figures, submitted to Journal of Physical Society of Japa
Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor
The nature of the pseudogap phase is a central problem in the quest to
understand high-Tc cuprate superconductors. A fundamental question is what
symmetries are broken when that phase sets in below a temperature T*. There is
evidence from both polarized neutron diffraction and polar Kerr effect
measurements that time- reversal symmetry is broken, but at temperatures that
differ significantly. Broken rotational symmetry was detected by both
resistivity and inelastic neutron scattering at low doping and by scanning
tunnelling spectroscopy at low temperature, but with no clear connection to T*.
Here we report the observation of a large in-plane anisotropy of the Nernst
effect in YBa2Cu3Oy that sets in precisely at T*, throughout the doping phase
diagram. We show that the CuO chains of the orthorhombic lattice are not
responsible for this anisotropy, which is therefore an intrinsic property of
the CuO2 planes. We conclude that the pseudogap phase is an electronic state
which strongly breaks four-fold rotational symmetry. This narrows the range of
possible states considerably, pointing to stripe or nematic orders.Comment: Published version. Journal reference and DOI adde
The NICMOS Snapshot Survey of nearby Galaxies
We present ``snapshot'' observations with the NearInfrared Camera and
MultiObject Spectrometer (NICMOS) on board the Hubble Space Telescope (HST) of
94 nearby galaxies from the Revised Shapley Ames Catalog. Images with 0.2 as
resolution were obtained in two filters, a broad-band continuum filter (F160W,
roughly equivalent to the H-band) and a narrow band filter centered on the
Paschen alpha line (F187N or F190N, depending on the galaxy redshift) with the
51x51 as field of view of the NICMOS camera 3. A first-order continuum
subtraction is performed, and the resulting line maps and integrated Paschen
alpha line fluxes are presented. A statistical analysis indicates that the
average Paschen alpha surface brightness {\bf in the central regions} is
highest in early-type (Sa-Sb) spirals.Comment: Original contained error in flux calibration. Table 1 now has correct
Paschen Alpha fluxes. 14 pages LaTeX with JPEG and PS figures. Also available
at http://icarus.stsci.edu/~boeker/publications.htm
Symmetry breaking orbital anisotropy on detwinned Ba(Fe1-xCox)2As2 above the spin density wave transition
Nematicity, defined as broken rotational symmetry, has recently been observed
in competing phases proximate to the superconducting phase in the cuprate high
temperature superconductors. Similarly, the new iron-based high temperature
superconductors exhibit a tetragonal to orthorhombic structural transition
(i.e. a broken C4 symmetry) that either precedes or is coincident with a
collinear spin density wave (SDW) transition in undoped parent compounds, and
superconductivity arises when both transitions are suppressed via doping.
Evidence for strong in-plane anisotropy in the SDW state in this family of
compounds has been reported by neutron scattering, scanning tunneling
microscopy, and transport measurements. Here we present an angle resolved
photoemission spectroscopy study of detwinned single crystals of a
representative family of electron-doped iron-arsenide superconductors,
Ba(Fe1-xCox)2As2 in the underdoped region. The crystals were detwinned via
application of in-plane uniaxial stress, enabling measurements of single domain
electronic structure in the orthorhombic state. At low temperatures, our
results clearly demonstrate an in-plane electronic anisotropy characterized by
a large energy splitting of two orthogonal bands with dominant dxz and dyz
character, which is consistent with anisotropy observed by other probes. For
compositions x>0, for which the structural transition (TS) precedes the
magnetic transition (TSDW), an anisotropic splitting is observed to develop
above TSDW, indicating that it is specifically associated with TS. For
unstressed crystals, the band splitting is observed close to TS, whereas for
stressed crystals the splitting is observed to considerably higher
temperatures, revealing the presence of a surprisingly large in-plane nematic
susceptibility in the electronic structure.Comment: final version published in PNAS, including supplementary informatio
Effect of Disorder on Fermi surface in Heavy Electron Systems
The Kondo lattice model with substitutional disorder is studied with
attention to the size of the Fermi surface and the associated Dingle
temperature. The model serves for understanding heavy-fermion Ce compounds
alloyed with La according to substitution Ce{x}La{1-x}. The Fermi surface is
identified from the steepest change of the momentum distribution of conduction
electrons, and is derived at low enough temperature by the dynamical mean-field
theory (DMFT) combined with the coherent potential approximation (CPA). The
Fermi surface without magnetic field increases in size with decreasing x from
x=1 (Ce end), and disappears at such x that gives the same number of localized
spins as that of conduction electrons. From the opposite limit of x=0 (La end),
the Fermi surface broadens quickly as x increases, but stays at the same
position as that of the La end. With increasing magnetic field, a metamagnetic
transition occurs, and the Fermi surface above the critical field changes
continuously across the whole range of x. The Dingle temperature takes a
maximum around x=0.5. Implication of the results to experimental observation is
discussed.Comment: 5 pages, 5 figure
Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-Tc superconductor
A fundamental question of high-temperature superconductors is the nature of
the pseudogap phase which lies between the Mott insulator at zero doping and
the Fermi liquid at high doping p. Here we report on the behaviour of charge
carriers near the zero-temperature onset of that phase, namely at the critical
doping p* where the pseudogap temperature T* goes to zero, accessed by
investigating a material in which superconductivity can be fully suppressed by
a steady magnetic field. Just below p*, the normal-state resistivity and Hall
coefficient of La1.6-xNd0.4SrxCuO4 are found to rise simultaneously as the
temperature drops below T*, revealing a change in the Fermi surface with a
large associated drop in conductivity. At p*, the resistivity shows a linear
temperature dependence as T goes to zero, a typical signature of a quantum
critical point. These findings impose new constraints on the mechanisms
responsible for inelastic scattering and Fermi surface transformation in
theories of the pseudogap phase.Comment: 24 pages, 6 figures. Published in Nature Physics. Online at
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1109.htm
Origin of the Pseudogap in High-Temperature Cuprate Superconductors
Cuprate high-temperature superconductors exhibit a pseudogap in the normal
state that decreases monotonically with increasing hole doping and closes at x
\approx 0.19 holes per planar CuO2 while the superconducting doping range is
0.05 < x < 0.27 with optimal Tc at x \approx 0.16. Using ab initio quantum
calculations at the level that leads to accurate band gaps, we found that
four-Cu-site plaquettes are created in the vicinity of dopants. At x \approx
0.05 the plaquettes percolate, so that the Cu dx2y2/O p{\sigma} orbitals inside
the plaquettes now form a band of states along the percolating swath. This
leads to metallic conductivity and below Tc to superconductivity. Plaquettes
disconnected from the percolating swath are found to have degenerate states at
the Fermi level that split and lead to the pseudogap. The pseudogap can be
calculated by simply counting the spatial distribution of isolated plaquettes,
leading to an excellent fit to experiment. This provides strong evidence in
favor of inhomogeneous plaquettes in cuprates.Comment: 24 pages (4 pages main text plus 20 pages supplement
Decrease of upper critical field with underdoping in cuprate superconductors
The transition temperature Tc of cuprate superconductors falls when the
doping p is reduced below a certain optimal value. It is unclear whether this
fall is due to strong phase fluctuations or to a decrease in the pairing gap.
Different interpretations of photoemission data disagree on the evolution of
the pairing gap and different estimates of the upper critical field Hc2 are in
sharp contradiction. Here we resolve this contradiction by showing that
superconducting fluctuations in the underdoped cuprate Eu-LSCO, measured via
the Nernst effect, have a characteristic field scale that falls with
underdoping. The critical field Hc2 dips at p = 0.11, showing that
superconductivity is weak where stripe order is strong. In the archetypal
cuprate superconductor YBCO, Hc2 extracted from other measurements has the same
doping dependence, also with a minimum at p = 0.11, again where stripe order is
present. We conclude that competing states such as stripe order weaken
superconductivity and this, rather than phase fluctuations, causes Tc to fall
as cuprates become underdoped.Comment: Supplementary Information file available upon request; Nature Physics
(2012
Multispacecraft observations and modeling of the 22/23 June 2015 geomagnetic storm
The magnetic storm of 22â23 June 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, fieldâaligned currents from AMPERE (Active Magnetosphere and Planetary Electrodynamics Response), and ionospheric flow data from Defense Meteorological Satellite Program (DMSP). Our realâtime space weather alert system sent out a âred alert,â correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric oxygen, dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS Fast Plasma Instrument suite. At ionospheric altitudes, the AMPERE data show highly variable currents exceeding 20âMA. We present numerical simulations with the Block Adaptive TreeâSolarwind â Roe â Upwind Scheme (BATSâRâUS) global magnetohydrodynamic model linked with the Rice Convection Model. The model predicted the magnitude of the dipolarizations, and varying polar cap convection patterns, which were confirmed by DMSP measurements.Key PointsMHD models can reproduce well the dipolarizations seen at MMS and VAP. Space weather forecasting can predict Kp variations within 0.5 stepBeams of O+ flowing downstream appear to cross the separatrix and become a second energized population of the tail plasma sheetMHD models successfully reproduced the polar cap convection patterns and crossâpolar cap potential drops for a range of IMF conditionsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134114/1/grl54522_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134114/2/grl54522-sup-0002-FigureS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134114/3/grl54522.pd
- âŠ