7,407 research outputs found
Probing the isovector transition strength of the low-lying nuclear excitations induced by inverse kinematics proton scattering
A compact approach based on the folding model is suggested for the
determination of the isoscalar and isovector transition strengths of the
low-lying () excitations induced by inelastic proton
scattering measured with exotic beams. Our analysis of the recently measured
inelastic O+p scattering data at and 43 MeV/nucleon
has given for the first time an accurate estimate of the isoscalar
and isovector deformation parameters (which cannot be determined from
the (p,p') data alone by standard methods) for 2 and excited
states in O. Quite strong isovector mixing was found in the 2
inelastic O+p scattering channel, where the strength of the isovector
form factor (prototype of the Lane potential) corresponds to a
value almost 3 times larger than and a ratio of nuclear transition
matrix elements .Comment: 5 pages, 3 figure
Effect of Cross-Linking on the Electrical Properties of LDPE and its Lightning Impulse Ageing Characteristics
Cross-linked polyethylene (XLPE) is commonly used within high voltage cable insulation. It has improved thermal and mechanical resistance compared to normal low density polyethylene (LDPE). However, the cross-linking process may also vary the electrical characteristics of the material. This paper investigates changes in electrical properties of one type of LDPE before and after cross-linking. The effective lightning resistance is also considered, as the application of repetitive lightning impulse overvoltages can be a factor in insulation material ageing of high voltage cables. The material was cross-linked using trigonox-145 peroxide with controlled concentration. Samples were moulded to have a Rogowski profile and gold coated to make sure that they are evenly electrically stressed. Obtained results show that there are reductions in both space charge injection and the permittivity of the material after it is cross-linked. The breakdown strength of the material was also improved. However, the samples studied are more susceptible to ageing due to lightning impulses
A new proton fluence model for E greater than 10 MeV
Researchers describe a new engineering model for the fluence of protons with energies greater than 10 MeV. The data set used is a combination of observations made primarily from the Earth's surface between 1956 and 1963 and observations made from spacecraft in the vicinity of Earth between 1963 and 1985. With this data set we find that the distinction between ordinary proton events and anomalously large proton events made in earlier work disappears. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. In contrast to earlier models, results do not depend critically on the fluence from any one event
Optoelectronics of Inverted Type-I CdS/CdSe Core/Crown Quantum Ring
Inverted type-I heterostructure core/crown quantum rings (QRs) are
quantum-efficient luminophores, whose spectral characteristics are highly
tunable. Here, we study the optoelectronic properties of type-I core/crown
CdS/CdSe QRs in the zincblende phase - over contrasting lateral size and crown
width. For this we inspect their strain profiles, transition energies,
transition matrix elements, spatial charge densities, electronic bandstructure,
band-mixing probabilities, optical gain spectra, maximum optical gains and
differential optical gains. Our framework uses an effective-mass envelope
function theory based on the 8-band kp method employing the valence
force field model for calculating the atomic strain distributions. The gain
calculations are based on the density-matrix equation and take into
consideration the excitonic effects with intraband scattering. Variations in
the QR lateral size and relative widths of core and crown (ergo the
composition) affect their energy levels, band-mixing probabilities, optical
transition matrix elements, emission wavelengths/intensity, etc. The optical
gain of QRs is also strongly dimension and composition dependent with further
dependency on the injection carrier density causing band-filling effect. They
also affect the maximum and differential gain at varying dimensions and
compositions.Comment: Published in AIP Journal of Applied Physics (11 pages, 7 figures
Thermometry and signatures of strong correlations from Raman spectroscopy of fermionic atoms in optical lattices
We propose a method to directly measure the temperature of a gas of weakly
interacting fermionic atoms loaded into an optical lattice. This technique
relies on Raman spectroscopy and is applicable to experimentally relevant
temperature regimes. Additionally, we show that a similar spectroscopy scheme
can be used to obtain information on the quasiparticle properties and Hubbard
bands of the metallic and Mott-insulating states of interacting fermionic spin
mixtures. These two methods provide experimentalists with novel probes to
accurately characterize fermionic quantum gases confined to optical lattices.Comment: 13 pages, 22 figure
Nuclear incompressibility using the density dependent M3Y effective interaction
A density dependent M3Y effective nucleon-nucleon (NN) interaction which was
based on the G-matrix elements of the Reid-Elliott NN potential has been used
to determine the incompressibity of infinite nuclear matter. The nuclear
interaction potential obtained by folding in the density distribution functions
of two interacting nuclei with this density dependent M3Y effective interaction
had been shown earlier to provide excellent descriptions for medium and high
energy and heavy ion elastic scatterings as well as and heavy
cluster radioactivities. The density dependent parameters have been chosen to
reproduce the saturation energy per nucleon and the saturation density of spin
and isospin symmetric cold infinite nuclear matter. The result of such
calculations for nuclear incompressibility using the density dependent M3Y
effective interaction based on the G-matrix elements of Reid-Elliott NN
potential predicts a value of about 300 MeV for nuclear incompressibility.Comment: 4 Page
Asymptotic Behavior of Ext functors for modules of finite complete intersection dimension
Let be a local ring, and let and be finitely generated
-modules such that has finite complete intersection dimension. In this
paper we define and study, under certain conditions, a pairing using the
modules \Ext_R^i(M,N) which generalizes Buchweitz's notion of the Herbrand
diference. We exploit this pairing to examine the number of consecutive
vanishing of \Ext_R^i(M,N) needed to ensure that \Ext_R^i(M,N)=0 for all
. Our results recover and improve on most of the known bounds in the
literature, especially when has dimension at most two
- …