637 research outputs found

    Relationships between Campi Flegrei and Mt. Somma volcanism: evidence from melt inclusions in clinopyroxene phenocrysts from volcanic breccia xenoliths

    Get PDF
    We present compositions of reheated melt inclusions in clinopyroxene phenocrysts from three mafic xenoliths in Breccia Museo, Campi Flegrei, Italy. Melt inclusion compositions are remarkably different from the compositions of known contemporary Campi Flegrei lavas, being significantly enriched in K2O and depleted in Na2O. Some differences are also evident in FeO (total Fe as FeO) and TiO2 contents. The clinopyroxene phenocrysts could not have crystallised from Campi Flegrei magmas. We suggest that they originated from a volcanic system genetically very similar to, and possibly linked with, the > 14 ka volcanic system of Mt. Somma, another Campanian volcano ~30km east from Campi Flegrei, from which Vesuvius subsequently developed. This result indicates a close relationship (or link) between the two volcanic systems which have until now been considered separate. We speculate that the link was established prior to eruption of the Neapolitan Yellow Tuff (NYT) (~12 ka). The xenoliths were derived from a volcanic system older than the host breccias themselves. We suggest that this older volcanism had close similarities with the volcanism of the older products of Mt. Somma (~25 ka)

    Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications

    Get PDF
    Melt inclusions in phenocrysts are a potentially powerful tool in petrological research that can provide the only direct information available on the physical parameters ( P, T and melt composition) of crystallisation at various stages in the evolution of magmatic systems. However, melt inclusions also differ in principle from other parts of the magmatic system in that their composition, after trapping, may be controlled by the composition of the host phenocryst and therefore the direct application of our understanding of macro-scale magmatic processes to the interpretation of melt inclusion data can lead to erroneous conclusions. Our results indicate that the compositions of melt inclusions in early formed phenocrysts (olivine, pyroxene, plagioclase and spinel), often of most interest in petrological studies, can be affected by processes such as volatile dissociation, oxidation and/or partial re-equilibration with their host, both during natural cooling and homogenisation experiments. In particular, melt inclusions in all minerals are prone to hydrogen diffusion into or out of the inclusions after trapping and prior to eruption, and during homogenisation experiments. If not taken into account, this can significantly affect the crystallisation temperatures derived from the homogenisation experiments. Melt inclusions in highmagnesian olivine phenocrysts commonly have lower Fe contents compared to the initially trapped composition due to reequilibration with the host at lower temperatures. This often leads to the appearance of sulphide globules and in some cases high-magnesian clinopyroxene daughter crystals, and may cause an increase in the oxidation state of the inclusions. Homogenised melt inclusions in plagioclase phenocrysts in MORB usually have lower Ti and Fe, and higher Si contents compared to the melt composition at the moment of trapping. However, homogenisation experiments can provide reliable estimates of trapping temperature and the MgO, Al2O3, CaO, Na2O, and K2O contents of the host magma at the moment of trapping. Some of these processes can be identified by observing the behaviour of melt inclusions during homogenisation experiments using low-inertia visually controlled heating stages, and their effects can be minimised by using appropriate experimental conditions as determined by kinetic experiments, ideally completed for each phenocryst type in every sample. We also discuss general aspects of melt inclusion studies aimed at recovering H2O content of primary mantle-derived magmas and demonstrate that, in cases of low-pressure crystallisation, it is important to identify the first liquidus (most magnesian) olivine that crystallised from these magmas

    Major element and primary sulfur concentrations in Apollo 12 mare basalts: The view from melt inclusions

    Get PDF
    Major element and sulfur concentrations have been determined in experimentally heated olivine-hosted melt inclusions from a suite of Apollo 12 picritic basalts (samples 12009, 12075, 12020, 12018, 12040, 12035). These lunar basalts are likely to be genetically related by olivine accumulation (Walker et al. 1976a, b). Our results show that major element compositions of melt inclusions from samples 12009, 12075, and 12020 follow model crystallization trends from a parental liquid similar in composition to whole rock sample 12009, thereby partially confirming the olivine accumulation hypothesis. In contrast, the compositions of melt inclusions from samples 12018, 12040, and 12035 fall away from model crystallization trends, suggesting that these samples crystallized from melts coin positionally distinct from the 12009 parent liquid and therefore may not be strictly cogenetic with other members of the Apollo 12 picritic basalt suite. Sulfur concentrations in melt inclusions hosted in early crystallized olivine (17075) are consistent with a primary magmatic composition of 1050 ppm S, or about a factor of 2 greater than whole rock compositions with 400-600 ppm S. The Apollo 12 picritic basalt parental magma apparently experienced outgassing and loss of S during transport and eruption on the lunar surface. Even with the higher estimates of primary magmatic sulfur concentrations provided by the melt inclusions, the Apollo 12 picritic basalt magmas would have been undersaturated in sulfide in their mantle source regions and capable of transporting chalcophile elements from the lunar mantle to the surface. Therefore, the measured low concentration of chalcophile elements (e.g., Cu, Au, PGEs) in these lavas must be a primary feature of the lunar mantle and is not related to residual sulfide remaining in the mantle during melting. We estimate the sulfur concentration of the Apollo 12 mare basalt source regions to be similar to 75 ppm, which is significantly lower than that of the terrestrial mantle

    Sulfide breccias from the Semenov-3 hydrothermal field, Mid-Atlantic Ridge: authigenic mineral formation and trace element pattern

    Get PDF
    The aim of this paper is the investigation of the role of diagenesis in the transformation of clastic sulfide sediments such as sulfide breccias from the Semenov-3 hydrothermal field (Mid-Atlantic Ridge). The breccias are composed of marcasite\u2013pyrite clasts enclosed in a barite\u2013sulfide\u2013quartz matrix. Primary hydrothermal sulfides occur as colloform, fine-crystalline, porous and radial marcasite\u2013pyrite clasts with inclusions or individual clasts of chalcopyrite, sphalerite, pyrrhotite, bornite, barite and rock-forming minerals. Diagenetic processes are responsible for the formation of more diverse authigenic mineralization including framboidal, ovoidal and nodular pyrite, coarse-crystalline pyrite and marcasite, anhedral and reniform chalcopyrite, inclusions of HgS phase and pyrrhotite\u2013sphalerite\u2013chalcopyrite aggregates in coarse-crystalline pyrite, zoned bornite\u2013chalcopyrite grains, specular and globular hematite, tabular barite and quartz. The early diagenetic ovoid pyrite is enriched in most trace elements in contrast to late diagenetic varieties. Authigenic lower-temperature chalcopyrite is depleted in trace elements relative to high-temperature hydrothermal ones. Trace elements have different modes of occurrence: Se is hosted in pyrite and chalcopyrite; Tl is related to sphalerite and galena nanoinclusions; Au is associated with galena; As in pyrite is lattice-bound, whereas in chalcopyrite it is related to tetrahedrite\u2013tennantite nanoinclusions; Cd in pyrite is hosted in sphalerite inclusions; Cd in chalcopyrite forms its own mineral; Co and Ni are hosted in chalcopyrite

    Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts

    Get PDF
    Silicate-sulfide liquid immiscibility plays a key role in the formation of magmatic sulfide ore deposits but incipient sulfide melts are rarely preserved in natural rocks. This study presents the distribution and compositions of olivine-hosted sulfide melt globules resulting from silicate-sulfide liquid immiscibility in primitive arc basalts. Abundant sulfide droplets entrapped in olivine from primitive basalts of the 1941 eruption and pre-historic eruptive cone “Mt. 1004” of the Tolbachik volcano, Kurile-Kamchatka arc. Inclusions range from submicron to 250 ÎŒm in size, coexist with sulfur-rich glass (≀ 1.1 wt% S), and, in some cases, with magmatic anhydrite. Saturation in sulfide occurred early in the evolution of a water- and sulfur-rich magma, moderately oxidized (QFM + 1 to +1.5), which crystallized high-Mg olivine (Fo₈₆ˍ₉₂), clinopyroxene and Cr-spinel. The process developed dense “clouds” of sulfide in relatively small volumes of magma, with highly variable abundances of chalcophile metals. The low degree of sulfide supersaturation promoted diffusive equilibration of the growing droplets with the melt in Ni and Cu, resulting in high concentrations (≈ 38 mol%) of CuS and NiS in the earliest sulfide liquids. The Tolbachik samples provide a glimpse into deep arc processes not seen elsewhere, and may show how arc magmas, despite their oxidized nature, saturate in sulfide.This study was supported by the Russian Science Foundation grant # 16-17-10145. This is CRPG contribution #253
    • 

    corecore