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ABSTRACT 

Silicate-sulfide liquid immiscibility plays a key role in the formation of magmatic sulfide ore 

deposits but incipient sulfide melts are rarely preserved in natural rocks. This study presents the 

distribution and compositions of olivine-hosted sulfide melt globules resulting from silicate-sulfide 

liquid immiscibility in primitive arc basalts. Abundant sulfide droplets entrapped in olivine from 

primitive basalts of the 1941 eruption and pre-historic eruptive cone “Mt. 1004” of the Tolbachik 

volcano, Kurile-Kamchatka arc. Inclusions range from submicron to 250 µm in size, coexist with 

sulfur-rich glass (≤ 1.1 wt% S), and, in some cases, with magmatic anhydrite. Saturation in sulfide 

occurred early in the evolution of a water- and sulfur-rich magma, moderately oxidized 

(QFM+1…+1.5), which crystallized high-Mg olivine (Fo86-92), clinopyroxene and Cr-spinel. The 

process developed dense “clouds” of sulfide in relatively small volumes of magma, with highly 

variable abundances of chalcophile metals. The low degree of sulfide supersaturation promoted 

diffusive equilibration of the growing droplets with the melt in Ni and Cu, resulting in high 

concentrations (≈38 mol%) of CuS and NiS in the earliest sulfide liquids. The Tolbachik samples 

provide a glimpse into deep arc processes not seen elsewhere, and may show how arc magmas, 

despite their oxidized nature, saturate in sulfide. 

 

1. Introduction 

Immiscible sulfide melt segregates from silicate melt if the concentration of S2– (sulfide) in the 

silicate melt surpasses the sulfur content at sulfide saturation (SCSS, e.g. Li and Ripley, 2005; 

O'Neill and Mavrogenes, 2002; Wykes et al., 2014). Chalcophile and highly siderophile elements 

(Cu, Ni, Au, PGE etc.) are present in the silicate melt in low concentrations but strongly partition 

into sulfide, such that even small amounts of sulfide melt collect most or all of the chalcophile 

elements. Because of its high specific gravity, sulfide melt tends to accumulate in lower parts of 

magma chambers, which become potential Cu-Ni-(PGE) magmatic sulfide ore deposits (e.g. 

Naldrett, 2004). The phenomenon of sulfide-silicate immiscibility plays a key role in the formation 
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of magmatic sulfide ores and has been extensively studied, both experimentally (e.g. Holzheid, 

2010; Jugo et al., 2005a; Jugo et al., 2005b; Jugo et al., 2010; Namur et al., 2016; O'Neill and 

Mavrogenes, 2002; Peach and Mathez, 1993; Smythe et al., 2017) and theoretically (e.g. Ariskin et 

al., 2013; Mungall, 2002; Zhang, 2015). Micron-sized sulfide droplets and silicate melt inclusions 

containing sulfides are occasionally found in quenched underwater glasses or early magmatic 

phases grown from primitive melts in oceanic rifts and intraplate oceanic settings (e.g. Ackermand 

et al., 1998; Czamanske and Moore, 1977; Francis, 1990; Gurenko et al., 1987; Kamenetsky et al., 

2013; Mathez, 1976; Patten et al., 2012; Peach et al., 1990; Stone and Fleet, 1991). 

Although arc basaltic magmas are often sulfur-rich (Wallace and Edmonds, 2011) and 

therefore could potentially form sulfides, they are commonly more oxidized than mid-ocean ridge 

and intraplate oceanic basalts (e.g. Evans et al., 2012; Richards, 2015 and references therein), 

within the range of fO2 from QFM+1 to QFM+3 for the majority of samples (see review in 

Matjuschkin et al., 2016 and references therein). Since at fO2 > QFM+1 sulfur exists primarily as 

sulfate (e.g. Jugo et al., 2005a; Jugo et al., 2010), arc basalts are not expected to saturate in sulfide 

unless they are reduced by graphite or other reductants from assimilated country rocks (Tomkins et 

al., 2012) or via SO2 reactions with calcic host rocks (Henley et al., 2015; Mavrogenes and Blundy, 

2017). An exception is Cu-Fe sulfides trapped as inclusions in minerals in evolved arc magmas (e.g. 

Humphreys et al., 2015; Nadeau et al., 2010, and references therein), due either to a change in 

volatile content (Humphreys et al., 2015) or magnetite crystallization (Jenner et al., 2010). Such 

sulfides are typically Cu-rich, Ni- and PGE-poor and never form large accumulations unlike early 

Ni-PGE-rich magmatic sulfides from Mg-rich primitive melts (Naldrett, 2004). Moreover, direct 

evidence of incipient sulfide melts in continental settings is partially or completely eradicated by 

oxidation of sulfide melts and their crystalline products by magmatic and deuteric fluids (e.g. Keith 

et al., 1997; Larocque et al., 2000; Wilkinson, 2013).  

This study of micron-sized sulfide globules in olivine phenocrysts from Tolbachik volcano, 

Kurile-Kamchatka arc investigates the timing of sulfide saturation and compositions of immiscible 

sulfide melts. We show that sulfide saturation occurred early in primitive magmas and persisted 

during olivine crystallization. We also discuss triggers for sulfide saturation in this particular case, 

and make implications for sulfide melt evolution and entrapment into olivine phenocrysts. 

2. Tolbachik volcano and rocks 

The Tolbachik Volcanic Complex in the central part of the Central Kamchatka Depression 

(CKD) is the southernmost of the Klyuchevskoy Group of volcanoes, which is located at the north 

end of the Kurile-Kamchatka arc close to Kamchatka-Aleutian arc junction. Volcanism at 

Kamchatka is driven by the subducting Pacific Plate, which moves in NW direction at ~80 mm/year 

(DeMets et al., 1990; Steblov et al., 2003). The subducting plate is relatively cold with estimated 

age of ~90 Ma (Gorbatov et al., 1997). The depth of the Moho discontinuity beneath Tolbachik was 

estimated at 30-42 km, with uncertainties due to “a gradual transition from crustal to upper-mantle 

rocks” (Iwasaki et al., 2013 and references therein). The depth to the Benioff zone under Tolbachik 

is ~180 km (Gorbatov et al., 1997). Three volcanoes of the Klyuchevskoy Group (Tolbachik, 

Klyuchevskoy and Shiveluch) each ejected around 2 km3 of lava and tephra in dense-rock 

equivalent during the last 80 years (time of observations), which makes these volcanoes the most 

productive arc volcanoes on Earth (Portnyagin et al., 2005). A combination of mantle upwelling 

coupled with decompression melting and fluid-triggered melting of the mantle wedge was proposed 

to explain anomalously high productivity of Tolbachik and other volcanoes in the CKD (Portnyagin 

et al., 2005). 

The Tolbachik complex consists of the Ostry Tolbachik stratovolcano (extinct), the Plosky 

Tolbachik stratovolcano (active) and two chains of more than 170 monogenetic scoria cones and 

associated lava fields that extend NE and SSW from Plosky Tolbachik (Fig. 1, Supplementary Fig. 

S1). Plosky Tolbachik is renowned for its voluminous effusive eruptions of low-viscosity magmas. 

A detailed literature review of the lithospheric structure and tectonic setting of the region can be 

found in Churikova et al. (2015a) and Portnyagin et al. (2007a). A recent review of the magmatic 
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system of Tolbachik volcano was presented by Belousov et al. (2015). Chemical compositions and 

petrographic features of Tolbachik rocks can be found in published literature (e.g. Churikova et al., 

2015a; Churikova et al., 2015b; Flerov et al., 1984; Portnyagin et al., 2007a; Portnyagin et al., 

2015). 

Tolbachik rocks vary from basalts to basaltic trachyandesites (Supplementary Fig. S2a) and 

have a bimodal distribution of MgO, ranging from 3 to 5.5 wt% MgO (low-Mg basaltic 

trachyandesites) and from 8 to 11.5 wt% MgO (high-Mg basalts) (Supplementary Fig. S2b). High-

Al basalts make up more than 90% of the total ejected material. High-Mg basalts are thought to 

represent near primary arc magmas and are among the most primitive arc rocks globally 

(Portnyagin et al., 2007a). Both high- and low-Mg Tolbachik rocks belong to either medium-K or 

high-K rock series (Supplementary Fig. S2b). The existence of the high-K series was attributed to 

mantle upwelling due to intra-arc rifting (Churikova et al., 2015b). Alternatively, the compositions 

of the Tolbachik volcanic series with anomalously broad range (5–8-fold) of concentrations of 

incompatible elements (K, Rb, Nb, Ba) at a given MgO content fits a Recharge-Evacuation-

Fractional Crystallization model (Portnyagin et al., 2015). Basalts from the 1941 eruption cone and 

the Mt. 1004 cone are classified as high-Mg, high-K basalt (Supplementary Fig. S2b) and contain 

olivine phenocrysts with sulfide globules, which are the focus of this study. 

3. Samples and Methods 

The samples for this study were collected from the 1941 eruptive cone (summit at 55.7949° N, 

160.3321° E, 2104 m asl), 3.5 km SW of the edge of the summit caldera of Plosky Tolbachik (Fig. 

1, Supplementary Fig. S1). It is a ~100 m high scoria cone with a 5 km-long lava and an adjacent 

field covered by volcanic bombs and scoria (Supplementary Fig. S2), with a total volume of ejected 

basaltic material of ~ 0.07–0.10 km3 (Braitseva et al., 1984; Piip, 1946). The samples included three 

scoria samples, each of about 10 kg; two samples of compact lava and two samples of volcanic 

bombs, altogether more than 60 kg. Scoria and bomb samples were collected ~ 200 m apart of each 

other (Supplementary Table S1), but did not reveal any difference in bulk rock composition and 

sulfide abundances. The 1941 magnesian basalts (50.5-51.0% SiO2 and 8.9% MgO; Supplementary 

Table S2) contain ~4 wt% phenocrysts of olivine, the majority of which are 1-5 mm crystals (85– 

91 mol% Fo; Fig. 2). In addition to olivine, the rock contains rare plagioclase and pyroxene 

phenocrysts. The groundmass comprises clinopyroxene, plagioclase, Ti-magnetite and glass. 

Additional samples were from “Mt. 1004” – a pre-historic, ~ 150 m-high cone (55.6753° N, 

160.2369° E) located 15 km SSW from the 1941 cone (Fig. 1). Mt. 1004 rocks are both high-

alumina and high-magnesian basalts; the latter are compositionally similar to the 1941 eruption 

rocks, but contain more phenocrysts of olivine and clinopyroxene (up to 10 %), thus resulting in 

higher MgO contents (up to 11.5 wt%).  

Samples of lava and scoria were crushed and sieved, followed by separation of a 0.3–1.5 mm 

fraction in a heavy liquid with a specific gravity of 3.0 (75% bromoform + 25% methylene iodide). 

The addition of methylene iodide (=3.32) was necessary because of the high specific gravity of the 

rock groundmass (~2.9–2.95) that exceeds specific gravity of pure bromoform (=2.89). Olivine 

grains from the heavy fraction were placed in a Petri dish under immersion oil in a layer spread 

across the surface, and examined using a binocular microscope. About 1200 olivine grains 

containing sulfide globules were found among ~ 200,000 examined grains. Only crystals with large 

sulfide globules ( 20 µm) and sulfide “swarms” were selected for further studies. Several tens of 

sulfide-bearing olivine grains were mixed with a 5 µm powder of SiC and diamond (to maintain 

reductive atmosphere in an ampoule), placed in the Pt ampoule 2.5 mm in diameter, heated in a 

vertical furnace at 1200 °C for 5 minutes, followed by rapid quenching (~500 °C/s) in water. 

Heating was aimed at rehomogenization of sulfides and making their analyzed compositions more 

representative of the trapped sulfide liquid.  

Both unheated and heated sulfide globules were exposed and polished using 1m diamond 

paste and studied by scanning electron microscopy with energy-dispersive spectrometer (Vega 

Tescan II XMU, Institute of Experimental Mineralogy, Russian Academy of Sciences, 
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Chernogolovka, Russia; Hitachi SU-70, Central Science Laboratory, University of Tasmania, 

Hobart). Major and trace element contents in rock samples were analyzed by XRF and ICP-MS in 

commercial Geoscience Laboratories, Sudbury, Ontario. Concentrations of major elements, S and 

Cl in vitreous melt inclusions were measured using electron microprobe microanalyzer with WDS 

detectors Cameca SX-100 (Institute of Geochemistry and Analytical Chemistry, Russian Academy 

of Sciences, Moscow). Analytical conditions were 15 kV accelerating voltage and 12 nA probe 

current with a 10 µm defocused spot and counting time of 20–60 s; matrix effects were corrected 

using the ZAF method. The analytical conditions and instrumentation used for laser ablation 

ICPMS analysis of sulfide-bearing olivine and sulfide globules are presented in the Supplementary 

Materials and the companion paper (Kamenetsky et al., 2017). 

4. Results 

4.1. Olivine phenocrysts and olivine-hosted inclusions 

Studied olivine phenocrysts are loose crystals in tephra with little basaltic glass attached to 

their surface, crystals from thick basalt flows and scoria bombs. The olivine grains, belonging to 

different eruptive (magma fragmentation) modes, underwent cooling at different rates, from rapid 

(loose crystals) through intermediate (in tephra and bombs) to slow (lava). Most crystals show 

normal zoning from cores of Fo88-92 to rims of Fo82-85 with most compositions between 88 and 91 

mol% Fo (Fig. 2). Olivine phenocrysts contain numerous inclusions of crystals (Cr-spinel, 

clinopyroxene and orthopyroxene), silicate melt (glassy to partly crystallized), fluid bubbles, sulfide 

globules and combinations of the above phases in random proportions (Kamenetsky et al., 2017). 

Compositions of olivine, hosting silicate and sulfide melt inclusions, are detailed in Kamenetsky et 

al. (2017). The abundances of Ni and Cu in olivine grains containing sulfide inclusions (Fig. 2b-d; 

Supplementary Table S3) are of particular interest, as they may reflect the concentration of these 

chalcophile metals in the magma undergoing sulfide immiscibility. In the sulfide-free olivine 

phenocrysts the abundance of Ni is positively correlated with Fo (2900 to 1200 ppm in Fo91-87), 

whereas Cu remains almost constant (3.2 ± 0.5 ppm). In contrast, the olivine phenocrysts with 

sulfide inclusions are characterized by variable and systematically lower Ni and scattered Cu (0.7-

6.6 ppm) contents at a given Fo (Fig. 2b-d). 

Compositions of silicate melt inclusions, corrected for in-situ olivine crystallization, are more 

primitive, but still overlap with the whole rock MgO (6-13 and 8.9 wt%, respectively) contents 

(Kamenetsky et al., 2017). However, the compositions of melt inclusions and host basalts cannot be 

linked by simple fractional crystallization of common phenocrysts, as the abundances of K2O (0.50-

0.85 and 1.35 wt%, respectively), as well as P2O5 and trace element ratios (e.g. Sr/Nd, Ba/Rb, 

Zr/Hf, Zr/Sm etc.) are principally different. Volatile contents in glass from such melt inclusions 

vary from near zero to exceptionally high values, originally containing at least 5.2 wt% H2O, 1200 

ppm CO2 and 0.28 wt% Cl (Kamenetsky et al., 2017). Naturally quenched melt inclusions are 

characterized by high S abundances (up to 0.30–0.35 wt%, Fig. 3). Some melt inclusions, especially 

those associated with sulfides and/or containing anhydrite (Fig. 3, 5a-d, h), are even more enriched 

in sulfur (up to 1.1 wt%; Supplementary Fig. S3).  

4.2. Sulfide globules in olivine 

Approximately 0.6 % and 0.2 % of olivine grains extracted from the 1941 cone and Mt. 1004 

cone samples, respectively, contain a sulfide melt inclusion (hereafter, sulfide droplet or sulfide 

globule), or a group of such inclusions (Fig. 4, 5). In total, ~1200 and ~ 100 grains olivine grains 

with sulfides were picked up from the studied samples of 1941 eruption and Mt. 1004, respectively. 

Most sulfide droplets are 10 to 100 microns across, rarely reaching 250 microns. Occasionally, sub-

micron to micron-sized inclusions form “swarms” consisting of hundreds to thousands of individual 

droplets (Fig. 4a-d), with a calculated volume density exceeding 8,000 droplets/mm3. Rarely, 

sulfides occur as inclusion arrays (Fig. 4b, f) or form thin films inside cracks in olivine (Fig. 4g). 

Tolbachik sulfides occur exclusively as inclusions in olivine phenocrysts; none have been 

observed within the rock groundmass. Sulfide globules are commonly enclosed directly in olivine 
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(Fig. 5e-g), but ~ 30% have a coating of the silicate melt, with or without fluid bubbles, or reside in 

silicate melt inclusions (Fig. 5a-d, g). The majority of the droplets are nearly spherical, though some 

are flattened/elongated (Fig. 4b, f); their spherical morphology indicates they were captured as 

liquid. Many droplets have cavities on the surface or closed pores inside (Fig. 5c, d), or are 

surrounded by bubbles that probably contained aqueous fluid (Fig. 5b). 

The majority of sectioned sulfide globules, especially naturally quenched (Fig. 5a, c-e) in 

olivine from tephra and those that were experimentally heated and quenched (Fig. 5g, h), are 

texturally homogeneous. Some examined sulfide globules in olivine from the lava samples appear 

as fine or coarse intergrowths of MSS (Fe-Ni-S monosulfide solid solution) and ISS (Fe-Cu-S 

intermediate solid solution) and may be also composed of crisscrossing intergrowths of chalcopyrite 

(CuFeS2) and cubanite (CuFe2S3), associated with “patches” of mackinawite (Fe,Ni)S0.9 or 

pentlandite (Fe,Ni)9S8 (Fig. 5e, f). Smaller sulfide globules (< 10 μm) tend to be always 

homogeneous. Given occurrence of homogeneous and inhomogeneous textures in sulfides from the 

tephra and lava samples respectively, we relate differences in phase compositions and textures to 

fast and slow cooling rates. 

Average bulk compositions of individual globules were obtained by rastered beam energy-

dispersive X-ray spectroscopy (EDS) collected over the exposed globule surfaces. Considering the 

fine-grained texture of the majority of globules, this analysis provides values close to the bulk 

(volume) composition even for visually heterogeneous, multiphase globules. Admittedly, the third 

dimension is missing from these analyses, but the representativeness of the compositions analyzed 

at the surface was confirmed by the LA-ICPMS analyses of selected globules, which correlated 

with EDS estimates (Fig. 6, Supplementary Table S3). The amount of oxygen in the Tolbachik 

sulfides does not exceed a few wt%, and is stored in low-Ti magnetite, which is interstitial to 

sulfide phases (Fig. 5e, f). 

The studied sulfide droplets are characterized by an average Me:S ratio of 0.938 ± 0.075 (2σ) 

and 0.998 ± 0.076 (2σ) for unheated and heated samples, respectively (Supplementary Tables S3-

S5). As these values are close to unity they can be presented on a FeS-NiS-CuS ternary. The 

majority of the compositional data is distributed within the FeS-0.6NiS-0.6CuS ternary (Fig. 7a, b). 

The maximum measured contents of NiS and CuS are 38.1 and 37.6 mol% respectively; the rest 

being FeS. Large globules tend to be enriched in Cu, whereas smaller globules in swarms are Ni-

rich (Fig. 4c; Supplementary Table S4). Sulfides from the 1941 cone and from the Mt. 1004 cone 

are compositionally similar. 

5. Discussion 

5.1. Sulfide melt compositional variability 

Strong compositional variability recorded in the Tolbachik sulfide globules (Fig. 7a, b) is 

mirrored in the sulfide globules in glasses and phenocrysts from other tectonic settings (Fig. 7c). 

Among a number of chemical and physical parameters that can be responsible for compositions of 

incipient sulfide liquids, the abundance of chalcophile metals in the silicate melt undergoing 

immiscibility, is considered in our study. Unfortunately, records of metal contents in natural silicate 

melts prior to immiscibility do not exist; however, phenocrysts from same magmatic systems may 

register chemical composition and evolution of their parental magmas. In the case of studied 

Tolbachik magmas, the sulfide-free olivine phenocrysts document typical fractionation of Ni and 

Cu, whereas the composition of sulfide-bearing olivine is much more diverse (Fig. 2b-d). 

Significant scatter in abundances of Ni, Cu and Ni/Cu for a given Fo value of the sulfide-bearing 

olivine (Fig. 2b-d) testifies to similarly variable abundances of these metals and their ratio in the 

magma. On the other hand, the compositions of olivine and olivine-hosted sulfide inclusions are 

unambiguously related to abundances of chalcophile metals and their ratios (Fig. 8). Taken together 

with the compositional variability of olivine (Fig. 2b-d), this strongly supports the equilibrium 

between host olivine and trapped sulfide melts, and argues for fluctuating concentrations of 

chalcophile metals in parental magmas.  
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Another possible explanation for systematically lower Ni content in olivine with sulfide 

globules (Fig. 2c) is Ni equilibrium exchange between olivine and sulfide (Barnes et al., 2013). The 

partitioning coefficient KD = (NiS/FeS)sulfide/(NiO/FeO)olivine depends positively on Ni content in 

the sulfide melt and decreases with increasing oxygen fugacity (Fig. 9; Barnes et al., 2013). The 

compositional relationships between the Tolbachik sulfide globules and their host olivine suggest 

fO2 corresponding to QFM+1 or slightly more oxidized conditions (Fig. 9). These are in agreement 

fO2 ~ QFM + 1 ... + 1.5, deduced from the Tolbachik Cr-spinel compositions (Kamenetsky et al., 

2017). 

5.2. Kinetic controls on sulfide melt compositions 

It is generally accepted that early sulfide melt forming due to silicate-sulfide immiscibility is 

close in composition to FeS (Naldrett, 2004; Zhang, 2015) and then interacts with sufficient amount 

of magma to acquire chalcophile elements. Alternatively, the model of “kinetic equilibration” 

(Mungall, 2002) predicts that incipient sulfide melts are not necessarily poor in chalcophile 

elements at low degrees of sulfide supersaturation. High concentrations of chalcophile metals can 

be acquired by a slow-growing sulfide melt droplet that equilibrates with a large volume of the melt 

containing sufficient amounts of Cu and Ni. In fact, diffusion fluxes of metals that strongly partition 

into FeS liquid can surpass diffusion flux of FeS, resulting in instantaneous saturation of incipient 

sulfide droplets in chalcophile elements. According to Fick's first law, the mass flux J=–D·(d/dx), 

where D is the diffusivity coefficient and d/dx is the concentration gradient; in the case of sulfide 

supersaturation, only the fraction of S in the melt that exceeds the saturation level is expected to 

diffuse towards a growing sulfide droplet. 

A rigorous solution of diffusion equations for the sulfide growth is not straightforward. 

However, the ratio of metal flux to S2– flux from a silicate melt to growing sulfide droplets can be 

determined through consideration of the apparent R factor, i.e., a proportion between volumes of 

daughter sulfide melt and parental silicate melt, which provides metallic elements. According to 

Mungall (2002), if a sulfide droplet is essentially static (which is the case for micron-sized 

droplets), then apparent R factor can be presented as: 

 

 
where D(Me) and D(FeS) are diffusivities of a metal and FeS and СFeS

0 is the degree of sulfide 

supersaturation. If the concentration of S2– (FeS) in the melt just exceeds the saturation level, the 

second multiplier in the above equation approaches infinity and R factor will be high for all 

elements, even for those with low diffusivities. Diffusion flux of FeS to the droplet will be 

kinetically restricted and can be surpassed by fluxes of Cu and Ni. This probably occurred within 

the studied Tolbachik magmas, resulting in very high contents (30-38 mol%) of NiS and CuS even 

in the smallest sulfide droplets (Fig. 4c, 7a, Supplementary Tables S3-S5).  

5.3. Factors of silicate-sulfide immiscibility in the Tolbachik magmas 

Broadly correlated abundances of sulfur and chlorine in most sulfide-free silicate melt 

inclusions (0.1-0.35 wt% S and 0.05 - 0.14 wt% Cl) form a trend controlled by both crystallization 

and degassing (Fig. 3; Kamenetsky et al., 2017). The maximum concentrations of 0.35 wt% S and 

0.14 wt% Cl measured in such MI can be regarded as concentrations of these volatiles in the melt at 

pressure and temperature of entrapment (< 5 kbar and <1230 °C; Kamenetsky et al., 2017), with the 

degassing trend reflecting magma decompression. However, a few analyzed silicate glasses that 

directly associate with sulfides (Figs. 5a, c, d) and those present as individual inclusions in olivine 

containing sulfide swarms (Fig. 4a-f), are significantly enriched in sulfur (0.5 – 1.1 wt% S, Fig. 3) 

and even contain anhydrite (Figs. 5c, d; Kamenetsky et al., 2017). In general, the sulfur content in 

the melt inclusions from the 1941 Tolbachik basalt are 2-3 times higher than in any measured melt 

inclusions from other Kamchatka rocks (e.g. Portnyagin et al., 2007b). Although the CaO contents 

and CaO/Al2O3 in the studied melt inclusions are somewhat high for mantle-derived melts 
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(Kamenetsky et al., 2017), in this case sulfur is the only volatile element close to or in excess of the 

maximum abundance measured in island arc magmas (Wallace and Edmonds, 2011).  

Available modelling predicts that sulfur content at sulfide saturation (SCSS) in silicate melts 

depends on temperature, pressure, fO2 and melt composition. Most models demonstrate that the 

SCSS correlates positively with temperature and oxygen fugacity and negatively with pressure. 

However, the effects of melt composition on SCSS values are still controversial. For example, 100–

200 ppm Ni the melt may result in 1.5-2 fold decrease of SCSS (Ariskin et al., 2013), whereas the 

experimental model by Smythe et al. (2017) calculates even larger decrease of SCSS of up to an 

order of magnitude in the presence of several hundred ppm Ni and Cu. Unfortunately, this model is 

hardly applicable to arc magmas, because the experiments were conducted for anhydrous melts at 

deep mantle P-T conditions (1400-2160 °C, 1.5-24 GPa, and highly reduced conditions). Other 

models that are based on experiments with H2O-saturated basaltic melts (Fortin et al., 2015; Liu et 

al., 2007) may have opposite conclusions on effects of H2O on SCSS and do not take oxygen 

fugacity into account. The model by Li and Ripley (2009) estimates sulfur content at sulfide or 

anhydrite saturation, but have limited application to melts where sulfide and sulfate coexist. The 

role of oxygen fugacity in governing SCSS has been accounted for by Jugo et al. (2010) as  

SCSS = [S2–]*(1+ 10^(2*QFM-2.1))  

According to this model moderately oxidized Tolbachik melts (i.e. QFM +1…+1.5, Fig. 9; 

Kamenetsky et al., 2017) may achieve sulfide saturation at ~ 0.25 to 1.2 wt% total sulfur while fO2 

increases from QFM +1 to QFM +1.5 (Fig. 10). However, some other models (e.g. Ariskin et al., 

2013; Jugo, 2009) predict lesser dependence of SCSS on fO2 at the conditions of interest (~ 0.2-0.4 

wt% total S; Fig. 10). Thus, as high S abundances in the Tolbachik melts (Fig. 3; Kamenetsky et al., 

2017) appear to be a critical factor responsible for sulfide saturation. As only small proportion 

(<0.6%) of olivine phenocrysts record sulfide immiscibility, we are confident that common, 

although still elevated, abundances of S in the melt (~ 0.2-0.4 wt%) were not sufficient for sulfide 

saturation. On the other hand, the rarity of olivine with sulfide globules and melt inclusions 

containing anhydrite and extremely S-rich (Fig. 3-5) points to extraordinary conditions causing 

sulfide saturation and requirement of additional sulfur to match an exponential increase of SCSS in 

a narrow range of fO2 (Fig. 10; Jugo et al., 2010). 

5.4. Distribution of sulfide melts in magmatic reservoir 

Olivine can entrap silicate melt as well as other liquid (e.g. sulfide melt), solid particles and 

fluid bubbles dispersed in magmas. The local character of sulfur enrichment and related sulfide 

immiscibility in the Tolbachik magma can be deduced from the sulfur abundances in melt 

inclusions and statistical parameters of sulfide globules. We consider that more than 200,000 

examined olivine crystals are representative of the magma reservoir. Less than 1% of olivine 

phenocrysts contain sulfides, with several globules and swarms of globules more common than 

single globules. Similarly, only a few melt inclusions are characterized by anomalously high sulfur 

contents (> 0.5 wt%, Fig. 3, Supplementary Fig. S3) and/or may contain anhydrite (Fig. 5c, d), 

whereas most melt inclusions contain 0.3-0.35 wt% S or less (Kamenetsky et al., 2017). Such 

heterogeneous sulfur/sulfate/sulfide distribution suggests very specific conditions in terms of 

chemical (e.g. elevated sulfur content and related S2– super-saturation) and spatial conditions 

pertinent to volumes of melt that may undergo sulfide immiscibility.  

In a first approximation, settling olivine grains, formed during fractional crystallization of 

mafic magma are more or less uniformly distributed within a cooling magma chamber (e.g. 

Hawkesworth et al., 2000 and references therein). Therefore, growing and settling olivine crystals 

can serve as “probes”, randomly entrapping sulfide droplets and melt inclusions throughout the 

whole magmatic reservoir and delivering them intact to the surface. According to Stokes' law, the 

settling velocity of a particle V is directly proportional to the density difference and increases as the 

square of the particle size R: 
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where ρp and ρf  are the mass densities of a particle and fluid, respectively, and g the 

gravitational acceleration. Density difference between olivine (3.2 g/cm3) and melt (2.8 g/cm3) is 

around 0.4 g/cm3 and density difference between sulfide (4.8 g/cm3) and silicate melt is ~ 2 g/cm3, 

which is five times higher. However, the average size of olivine crystals (~1 mm) is 1.5-3 orders of 

magnitude larger than majority of sulfide droplets (1-30 μm), which eventually results in 

overwhelming differences (3-5 orders of magnitude) in settling velocities of olivine crystals and 

sulfide droplets. Therefore, olivine crystals that descend through a parcel of the sulfide super-

saturated melt may incorporate a large number of sulfide globules along growth planes and fractures 

(Fig. 4). The rest of the magma (> 99% of the total volume in our study) with ‘conventional’ sulfur 

abundances remains undersaturated in sulfide and produces sulfide-free olivine phenocrysts. 

6. Conclusions 

1. Our new data on sulfides in primitive arc magmas from the Tolbachik volcano (Kamchatka) 

provide a rare view of early immiscible sulfide melts, which previously were only considered 

theoretically or experimentally. In this volcanic suite even the smallest sulfide droplets proved to be 

Cu- and/or Ni-rich. The studied sulfide globules, as well as the host magnesian olivine, demonstrate 

substantial variability in Cu and Ni, likely caused by magma heterogeneity.  

2. Low degree of sulfide supersaturation could cause diffusion equilibration of growing sulfide 

globules with relatively large volumes of silicate melt (high apparent R-factor) that ensured high 

concentrations of Cu and especially Ni even in the earliest micron-sized globules. 

3. Sulfide segregation occurred at relatively high fO2 = QFM +1…+1.5 due to high total sulfur 

~ 1 wt%, which likely originated from some external source. These observations may be important 

in further development of a model for the formation of magmatic sulfide deposits. 

4. This study is a novel insight into deeper level processes, indicating sulfide saturation and 

silicate-sulfide melt immiscibility early in the history of oxidized arc basalts, which further implies 

that it is possible to form sulfide deposits at deeper levels of magmatic arcs. 
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Figure captions 

Fig. 1. Location of Tolbachik volcano and the 1941 and Mt. 1004 eruptive cones with the adjacent 

lava and scoria fields. 

Fig. 2. Typical zoned olivine phenocryst with core Fo90 to rim Fo84 compositional variations (a) and 

abundances of chalcophile metals in sulfide-free (open circles) and sulfide-bearing (grey 

circles) olivine phenocrysts from the 1941 eruption basalt (b-d). 

Fig. 3. Sulfur vs. chlorine contents of the groundmass glasses (1) and olivine-hosted silicate melt 

inclusions (2-6) from the 1941 eruption of Tolbachik. The majority of glass inclusions 

(homogenized in heating experiments (2) and naturally quenched (3)) are not associated with 

sulfide globules and/or anhydrite, and follow crystallization/degassing trends with sulphur not 

exceeding ~ 0.35 wt%. Some olivine-hosted inclusions of the silicate melt (4-6) contain 

anomalously high sulfur (> 0.4 wt% S) and are represented by clear glass (4), glass associated 

with sulfide globules (5) and partially devitrified melt associated with sulfide globules and 

anhydrite (6).  

Fig. 4. Optical (transmitted and reflected light) microphotographs of the 1941 Tolbachik olivine 

hosting sulfide globules as “swarms” or “arrays” (a-d), along growth planes (f) and sulfide 

films wetting fractures (g). 

Fig. 5. Typical associations of olivine-hosted sulfide globules with the silicate melt (a-d, h), fluid 

bubbles (a-d, g), clinopyroxene and anhydrite (c, d). A magnetite component (M) is often 

present within sulfide globules. Naturally quenched sulfide melt may appear as fine-grained 

(a, c-e) or inhomogeneous/multiphase (f). The heated and quenched sulfide melts are 

homogeneous (g) or have fine-grained texture (h). The labels denote glass (G), fluid bubbles 

(B), anhydrite (A), clinopyroxene (Px), Fe-Ni-S monosulfide solid solution (MSS) and Fe-Cu-

S intermediate solid solution (ISS), chalcopyrite (ccp), cubanite (cb) and mixed Cu-Ni-

bearing (Cu+Ni) compositions. The photos are made using transmitted-reflected light (a), 

transmitted light (b), reflected light (e-h) and backscattered electrons (c, d). 

Fig. 6. Correspondence between compositions of sulfide globules analyzed on exposed surfaces by 

energy-dispersive spectroscopy (scanning electron microscope, ESEM EDS) and by the 

volume ablation using laser-ablation ICPMS. 

Fig. 7. Compositional variability of sulfide globules: (a) naturally quenched from the 1941 and Mt. 

1004 cones of the Tolbachik volcano; (b) reheated and quenched from the 1941 cone in 
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comparison to small (<10 m) globules from “swarms (e.g. Fig. 4 a-d); (c) in mid-ocean 

riftogenic basaltic glasses (MORB; Francis, 1990), in glasses and olivine phenocrysts from 

the Kilauea volcano, Hawaii (OIB, Fleet and Stone, 1990) and in Cr-spinel from Platreef, 

Bushveld (Holwell et al., 2011). 

Fig. 8. Relationships between compositions of olivine and olivine-hosted sulfide globules in terms 

of chalcophile elements (Ni and Cu). 

Fig. 9. Relationships between Ni content in sulfide melts and Ni-Fe exchange coefficients KD for 

olivine-sulfide pairs in the Tolbachik samples. Most sulfides, irrespective of their Cu contents, 

formed at the same oxygen fugacity (~ QFM+1…+1.5), based on established dependence 

between KD and fO2 (Barnes et al., 2013).  

Fig. 10. Sulfur content at sulfide saturation (SCSS) vs. oxygen fugacity as predicted by different 

models: 1 – Jugo (2009); 2 – Jugo et al. (2010); 3 and 4 –at 0 ppm and 200 Ni, respectively by 

Ariskin et al. (2013). Total sulfur contents of Tolbachik melt inclusions in sulfide-free and 

sulfide-bearing olivine are from Fig. 3 and Kamenetsky et al. (2017). 
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