103 research outputs found

    ASPOD modifications of 1993-1994

    Get PDF
    ASPOD, Autonomous Space Processors for Orbital Debris, provides a unique way of collecting the space debris that has built up over the past 37 years. For the past several years, ASPOD has gone through several different modifications. This year's concentrations were on the solar cutting array, the solar tracker, the earth based main frame/tilt table, the controls for the two robotic arms, and accurate autocad drawings of ASPOD. This final report contains the reports written by the students who worked on the ASPOD project this year

    Smeared versus localised sources in flux compactifications

    Get PDF
    We investigate whether vacuum solutions in flux compactifications that are obtained with smeared sources (orientifolds or D-branes) still survive when the sources are localised. This seems to rely on whether the solutions are BPS or not. First we consider two sets of BPS solutions that both relate to the GKP solution through T-dualities: (p+1)-dimensional solutions from spacetime-filling Op-planes with a conformally Ricci-flat internal space, and p-dimensional solutions with Op-planes that wrap a 1-cycle inside an everywhere negatively curved twisted torus. The relation between the solution with smeared orientifolds and the localised version is worked out in detail. We then demonstrate that a class of non-BPS AdS_4 solutions that exist for IASD fluxes and with smeared D3-branes (or analogously for ISD fluxes with anti-D3-branes) does not survive the localisation of the (anti) D3-branes. This casts doubts on the stringy consistency of non-BPS solutions that are obtained in the limit of smeared sources.Comment: 23 pages; v2: minor corrections, added references, version published in JHE

    Rapid proteasomal degradation of mutant proteins is the primary mechanism leading to tumorigenesis in patients with missense AIP mutations

    Get PDF
    CONTEXT The pathogenic effect of AIP mutations (AIPmuts) in pituitary adenomas is incompletely understood. We have identified the primary mechanism of loss of function for missense AIPmuts. OBJECTIVE To analyze the mechanism/speed of protein turnover of wild-type (WT) and missense AIP variants, correlating protein half-life with clinical parameters. DESIGN Half-life and protein-protein interaction experiments and cross-sectional analysis of AIPmut positive patients' data were performed. SETTING Clinical academic research institution. PATIENTS Data was obtained from our cohort of pituitary adenoma patients and literature-reported cases. INTERVENTIONS Protein turnover of endogenous AIP in two cell lines and fifteen AIP variants overexpressed in HEK293 cells was analyzed via cycloheximide chase and proteasome inhibition. GST pull-down and quantitative mass spectrometry identified proteins involved in AIP degradation; results were confirmed by co-immunoprecipitation and gene knockdown. Relevant clinical data was collected. MAIN OUTCOME MEASURES Half-life of WT and mutant AIP proteins and its correlation with clinical parameters. RESULTS Endogenous AIP half-life was similar in HEK293 and lymphoblastoid cells (43.5 and 32.7h). AIP variants were divided in stable proteins (median 77.7h [IQR 60.7-92.9]), and those with short (27h [21.6-28.7]) or very short (7.7h [5.6-10.5]) half-life; proteasomal inhibition rescued the rapid degradation of mutant proteins. The experimental half-life significantly correlated with age at diagnosis of acromegaly/gigantism (r=0.411, P=0.002). The FBXO3-containing SCF complex was identified as the E3 ubiquitin-ligase recognizing AIP. CONCLUSIONS AIP is a stable protein, driven to ubiquitination by the SCF complex. Enhanced proteasomal degradation is a novel pathogenic mechanism for AIPmuts, with direct implications for the phenotype

    Branes, U-folds and hyperelliptic fibrations

    Full text link
    We construct a class of supersymmetric vacua of type IIB string theory describing systems of three- and seven-branes non-perturbatively completed by brane instantons. The vacua are specified by a set of holomorphic functions defined over a complex plane up to non-trivial U-duality monodromies around the brane locations. In the simplest setting, the solutions can be seen as a generalization of F-theory elliptic fibrations, where the torus fiber is replaced by a genus two Riemann surface with periods encoding the information on the axio-dilaton, the warp factor and the NS-NS and R-R fluxes.Comment: 49 pages, including 22 pages of Appendix, 2 figures. Minor change

    Massive type IIA string theory cannot be strongly coupled

    Full text link
    Understanding the strong coupling limit of massive type IIA string theory is a longstanding problem. We argue that perhaps this problem does not exist; namely, there may be no strongly coupled solutions of the massive theory. We show explicitly that massive type IIA string theory can never be strongly coupled in a weakly curved region of space-time. We illustrate our general claim with two classes of massive solutions in AdS4xCP3: one, previously known, with N = 1 supersymmetry, and a new one with N = 2 supersymmetry. Both solutions are dual to d = 3 Chern-Simons-matter theories. In both these massive examples, as the rank N of the gauge group is increased, the dilaton initially increases in the same way as in the corresponding massless case; before it can reach the M-theory regime, however, it enters a second regime, in which the dilaton decreases even as N increases. In the N = 2 case, we find supersymmetry-preserving gauge-invariant monopole operators whose mass is independent of N. This predicts the existence of branes which stay light even when the dilaton decreases. We show that, on the gravity side, these states originate from D2-D0 bound states wrapping the vanishing two-cycle of a conifold singularity that develops at large N.Comment: 43 pages, 5 figures. v2: added reference

    Moduli Stabilisation and de Sitter String Vacua from Magnetised D7 Branes

    Get PDF
    Anomalous U(1)'s are ubiquitous in 4D chiral string models. Their presence crucially affects the process of moduli stabilisation and cannot be neglected in realistic set-ups. Their net effect in the 4D effective action is to induce a matter field dependence in the non-perturbative superpotential and a Fayet-Iliopoulos D-term. We study flux compactifications of IIB string theory in the presence of magnetised D7 branes. These give rise to anomalous U(1)'s that modify the standard moduli stabilisation procedure. We consider simple orientifold models to determine the matter field spectrum and the form of the effective field theory. We apply our results to one-modulus KKLT and multi-moduli large volume scenarios, in particular to the Calabi-Yau P^4_{[1,1,1,6,9]}. After stabilising the matter fields, the effective action for the Kahler moduli can acquire an extra positive term that can be used for de Sitter lifting with non-vanishing F- and D-terms. This provides an explicit realization of the D-term lifting proposal of hep-th/0309187.Comment: 35 pages, 1 figure. v2: Minor changes, references adde

    Toward the End of Time

    Full text link
    The null-brane space-time provides a simple model of a big crunch/big bang singularity. A non-perturbative definition of M-theory on this space-time was recently provided using matrix theory. We derive the fermion couplings for this matrix model and study the leading quantum effects. These effects include particle production and a time-dependent potential. Our results suggest that as the null-brane develops a big crunch singularity, the usual notion of space-time is replaced by an interacting gluon phase. This gluon phase appears to constitute the end of our conventional picture of space and time.Comment: 31 pages, reference adde
    • …
    corecore