77 research outputs found

    Improving the performance of superconducting microwave resonators in magnetic fields

    Full text link
    The operation of superconducting coplanar waveguide cavities, as used for circuit quantum electrodynamics and kinetic inductance detectors, in perpendicular magnetic fields normally leads to a reduction of the device performance due to energy dissipating Abrikosov vortices. We experimentally investigate the vortex induced energy losses in such Nb resonators with different spatial distributions of micropatterned pinning sites (antidots) by transmission spectroscopy measurements at 4.2 K. In comparison to resonators without antidots we find a significant reduction of vortex induced losses and thus increased quality factors over a broad range of frequencies and applied powers in moderate fields

    Niobium stripline resonators for microwave studies on superconductors

    Full text link
    Microwave spectroscopy is a powerful experimental tool to reveal information on the intrinsic properties of superconductors. Superconducting stripline resonators, where the material under study constitutes one of the ground planes, offer a high sensitivity to investigate superconducting bulk samples. In order to improve this measurement technique, we have studied stripline resonators made of niobium, and we compare the results to lead stripline resonators. With this technique we are able to determine the temperature dependence of the complex conductivity of niobium and the energy gap Δ(0)=2.1\Delta(0)=2.1 meV. Finally we show measurements at the superconducting transition of a tantalum bulk sample using niobium stripline resonators

    Approaching ultra-strong coupling in Transmon circuit-QED using a high-impedance resonator

    Full text link
    In this experiment, we couple a superconducting Transmon qubit to a high-impedance 645 Ω645\ \Omega microwave resonator. Doing so leads to a large qubit-resonator coupling rate gg, measured through a large vacuum Rabi splitting of 2g9102g\simeq 910 MHz. The coupling is a significant fraction of the qubit and resonator oscillation frequencies ω\omega, placing our system close to the ultra-strong coupling regime (gˉ=g/ω=0.071\bar{g}=g/\omega=0.071 on resonance). Combining this setup with a vacuum-gap Transmon architecture shows the potential of reaching deep into the ultra-strong coupling gˉ0.45\bar{g} \sim 0.45 with Transmon qubits

    Multi-mode ultra-strong coupling in circuit quantum electrodynamics

    Full text link
    With the introduction of superconducting circuits into the field of quantum optics, many novel experimental demonstrations of the quantum physics of an artificial atom coupled to a single-mode light field have been realized. Engineering such quantum systems offers the opportunity to explore extreme regimes of light-matter interaction that are inaccessible with natural systems. For instance the coupling strength gg can be increased until it is comparable with the atomic or mode frequency ωa,m\omega_{a,m} and the atom can be coupled to multiple modes which has always challenged our understanding of light-matter interaction. Here, we experimentally realize the first Transmon qubit in the ultra-strong coupling regime, reaching coupling ratios of g/ωm=0.19g/\omega_{m}=0.19 and we measure multi-mode interactions through a hybridization of the qubit up to the fifth mode of the resonator. This is enabled by a qubit with 88% of its capacitance formed by a vacuum-gap capacitance with the center conductor of a coplanar waveguide resonator. In addition to potential applications in quantum information technologies due to its small size and localization of electric fields in vacuum, this new architecture offers the potential to further explore the novel regime of multi-mode ultra-strong coupling.Comment: 15 pages, 9 figure

    Magnetic hysteresis effects in superconducting coplanar microwave resonators

    Full text link
    We performed transmission spectroscopy experiments on coplanar half wavelength niobium resonators at a temperature T=4.2 K. We observe not only a strong dependence of the quality factor Q and the resonance frequency f_res on an externally applied magnetic field but also on the magnetic history of our resonators, i.e. on the spatial distribution of trapped Abrikosov vortices in the device. We find these results to be valid for a broad range of frequencies and angles between the resonator plane and the magnetic field direction as well as for resonators with and without antidots near the edges of the center conductor and the ground planes. In a detailed analysis we show, that characteristic features of the experimental data can only be reproduced in calculations, if a highly inhomogeneous rf-current density and a flux density gradient with maxima at the edges of the superconductor is assumed. We furthermore demonstrate, that the hysteretic behaviour of the resonator properties can be used to considerably reduce the vortex induced losses and to fine-tune the resonance frequency by the proper way of cycling to a desired magnetic field

    Angle-dependent electron spin resonance of YbRh2_2Si2_2 measured with planar microwave resonators and in-situ rotation

    Full text link
    We present a new experimental approach to investigate the magnetic properties of the anisotropic heavy-fermion system YbRh2_2Si2_2 as a function of crystallographic orientation. Angle-dependent electron spin resonance (ESR) measurements are performed at a low temperature of 1.6 K and at an ESR frequency of 4.4 GHz utilizing a superconducting planar microwave resonator in a 4^4He-cryostat in combination with in-situ sample rotation. The obtained ESR g-factor of YbRh2_2Si2_2 as a function of the crystallographic angle is consistent with results of previous measurements using conventional ESR spectrometers at higher frequencies and fields. Perspectives to implement this experimental approach into a dilution refrigerator and to reach the magnetically ordered phase of YbRh2_2Si2_2 are discussed.Comment: 12 page

    Bimodal Phase Diagram of the Superfluid Density in LaAlO3/SrTiO3 Revealed by an Interfacial Waveguide Resonator

    Full text link
    We explore the superconducting phase diagram of the two-dimensional electron system at the LaAlO3/SrTiO3 interface by monitoring the frequencies of the cavity modes of a coplanar waveguide resonator fabricated in the interface itself. We determine the phase diagram of the superconducting transition as a function of temperature and electrostatic gating, finding that both the superfluid density and the transition temperature follow a dome shape, but that the two are not monotonically related. The ground state of this 2DES is interpreted as a Josephson junction array, where a transition from long- to short-range order occurs as a function of the electronic doping. The synergy between correlated oxides and superconducting circuits is revealed to be a promising route to investigate these exotic compounds, complementary to standard magneto-transport measurements.Comment: 5 pages, 4 figures and 10 pages of supplementary materia

    Extracting the current-phase-relation of a monolithic three-dimensional nano-constriction using a DC-current-tunable superconducting microwave cavity

    Full text link
    Superconducting circuits with nonlinear elements such as Josephson tunnel junctions or kinetic inductance nanowires are the workhorse for microwave quantum and superconducting sensing technologies. For devices, which can be operated at high temperatures and large magnetic fields, nano-constrictions as nonlinear elements are recently under intense investigation. Constrictions, however, are far less understood than conventional Josephson tunnel junctions, and their current-phase-relationships (CPRs) -- although highly important for device design -- are hard to predict. Here, we present a niobium microwave cavity with a monolithically integrated, neon-ion-beam patterned three-dimensional (3D) nano-constriction. By design, we obtain a DC-current-tunable microwave circuit and characterize how the bias-current-dependent constriction properties impact the cavity resonance. Based on the results of these experiments, we reconstruct the CPR of the nanoconstriction. Finally, we discuss the Kerr nonlinearity of the device, a parameter important for many high-dynamic-range applications and an experimental probe for the second and third derivatives of the CPR. Our platform provides a useful method to comprehensively characterize nonlinear elements integrated in microwave circuits and could be of interest for current sensors, hybrid quantum systems and parametric amplifiers. Our findings furthermore contribute to a better understanding of nano-fabricated 3D constrictions

    Photon-Pressure with an Effective Negative Mass Microwave Mode

    Full text link
    Harmonic oscillators belong to the most fundamental concepts in physics and are central to many current research fields such as circuit QED, cavity optomechanics and photon-pressure systems. Here, we engineer a microwave mode in a superconducting LC circuit that mimics the dynamics of a negative mass oscillator, and couple it via photon-pressure to a second low-frequency circuit. We demonstrate that the effective negative mass dynamics lead to an inversion of dynamical backaction and to sideband-cooling of the low-frequency circuit by a blue-detuned pump field, which can be intuitively understood by the inverted energy ladder of a negative mass oscillator
    corecore