12 research outputs found

    Helical Polycarbodiimide Cloaking of Carbon Nanotubes Enables Inter-Nanotube Exciton Energy Transfer Modulation

    No full text
    The use of single-walled carbon nanotubes (SWCNTs) as near-infrared optical probes and sensors require the ability to simultaneously modulate nanotube fluorescence and functionally derivatize the nanotube surface using noncovalent methods. We synthesized a small library of polycarbodiimides to noncovalently encapsulate SWCNTs with a diverse set of functional coatings, enabling their suspension in aqueous solution. These polymers, known to adopt helical conformations, exhibited ordered surface coverage on the nanotubes and allowed systematic modulation of nanotube optical properties, producing up to 12-fold differences in photoluminescence efficiency. Polymer cloaking of the fluorescent nanotubes facilitated the first instance of controllable and reversible internanotube exciton energy transfer, allowing kinetic measurements of dynamic self-assembly and disassembly

    Helical Polycarbodiimide Cloaking of Carbon Nanotubes Enables Inter-Nanotube Exciton Energy Transfer Modulation

    No full text
    The use of single-walled carbon nanotubes (SWCNTs) as near-infrared optical probes and sensors require the ability to simultaneously modulate nanotube fluorescence and functionally derivatize the nanotube surface using noncovalent methods. We synthesized a small library of polycarbodiimides to noncovalently encapsulate SWCNTs with a diverse set of functional coatings, enabling their suspension in aqueous solution. These polymers, known to adopt helical conformations, exhibited ordered surface coverage on the nanotubes and allowed systematic modulation of nanotube optical properties, producing up to 12-fold differences in photoluminescence efficiency. Polymer cloaking of the fluorescent nanotubes facilitated the first instance of controllable and reversible internanotube exciton energy transfer, allowing kinetic measurements of dynamic self-assembly and disassembly

    Cell Membrane Proteins Modulate the Carbon Nanotube Optical Bandgap <i>via</i> Surface Charge Accumulation

    No full text
    Cell adhesion is a protein-mediated process intrinsic to most living organisms. Dysfunction in cell adhesion processes is implicated in various diseases, including thrombosis and metastatic cancers. Using an approach to resolve spectral features from cell membrane-associated photoluminescent single-walled carbon nanotubes, we found that nanotube optical bandgaps respond to the electrostatic potential of the cell surface, which corresponds to cell adhesion properties. We studied the carbon nanotube emission energy response to solution ionic potentials, which suggests sensitivity to local charge accumulation. We conclude that nanotubes respond to cell surface electrostatic potentials that are mediated by membrane proteins, which vary significantly across cell types. These findings portend the optical measurement of surface electrostatic potentials for biophysical measurements and biomedical applications

    A Carbon Nanotube Optical Sensor Reports Nuclear Entry <i>via</i> a Noncanonical Pathway

    No full text
    Single-walled carbon nanotubes are of interest in biomedicine for imaging and molecular sensing applications and as shuttles for various cargos such as chemotherapeutic drugs, peptides, proteins, and oligonucleotides. Carbon nanotube surface chemistry can be modulated for subcellular targeting while preserving photoluminescence for label-free visualization in complex biological environments, making them attractive materials for such studies. The cell nucleus is a potential target for many pathologies including cancer and infectious diseases. Understanding mechanisms of nanomaterial delivery to the nucleus may facilitate diagnostics, drug development, and gene-editing tools. Currently, there are no systematic studies to understand how these nanomaterials gain access to the nucleus. Herein, we developed a carbon nanotube based hybrid material that elucidate a distinct mechanism of nuclear translocation of a nanomaterial in cultured cells. We developed a nuclear-targeted probe <i>via</i> cloaking photoluminescent single-walled carbon nanotubes in a guanidinium-functionalized helical polycarbodiimide. We found that the nuclear entry of the nanotubes was mediated by the import receptor importin β without the aid of importin α and not by the more common importin α/β pathway. Additionally, the nanotube photoluminescence exhibited distinct red-shifting upon entry to the nucleus, potentially functioning as a reporter of the importin β-mediated nuclear transport process. This work delineates a noncanonical mechanism for nanomaterial delivery to the nucleus and provides a reporter for the study of nucleus-related pathologies

    A Carbon Nanotube Optical Sensor Reports Nuclear Entry <i>via</i> a Noncanonical Pathway

    No full text
    Single-walled carbon nanotubes are of interest in biomedicine for imaging and molecular sensing applications and as shuttles for various cargos such as chemotherapeutic drugs, peptides, proteins, and oligonucleotides. Carbon nanotube surface chemistry can be modulated for subcellular targeting while preserving photoluminescence for label-free visualization in complex biological environments, making them attractive materials for such studies. The cell nucleus is a potential target for many pathologies including cancer and infectious diseases. Understanding mechanisms of nanomaterial delivery to the nucleus may facilitate diagnostics, drug development, and gene-editing tools. Currently, there are no systematic studies to understand how these nanomaterials gain access to the nucleus. Herein, we developed a carbon nanotube based hybrid material that elucidate a distinct mechanism of nuclear translocation of a nanomaterial in cultured cells. We developed a nuclear-targeted probe <i>via</i> cloaking photoluminescent single-walled carbon nanotubes in a guanidinium-functionalized helical polycarbodiimide. We found that the nuclear entry of the nanotubes was mediated by the import receptor importin β without the aid of importin α and not by the more common importin α/β pathway. Additionally, the nanotube photoluminescence exhibited distinct red-shifting upon entry to the nucleus, potentially functioning as a reporter of the importin β-mediated nuclear transport process. This work delineates a noncanonical mechanism for nanomaterial delivery to the nucleus and provides a reporter for the study of nucleus-related pathologies

    A Carbon Nanotube Optical Sensor Reports Nuclear Entry <i>via</i> a Noncanonical Pathway

    No full text
    Single-walled carbon nanotubes are of interest in biomedicine for imaging and molecular sensing applications and as shuttles for various cargos such as chemotherapeutic drugs, peptides, proteins, and oligonucleotides. Carbon nanotube surface chemistry can be modulated for subcellular targeting while preserving photoluminescence for label-free visualization in complex biological environments, making them attractive materials for such studies. The cell nucleus is a potential target for many pathologies including cancer and infectious diseases. Understanding mechanisms of nanomaterial delivery to the nucleus may facilitate diagnostics, drug development, and gene-editing tools. Currently, there are no systematic studies to understand how these nanomaterials gain access to the nucleus. Herein, we developed a carbon nanotube based hybrid material that elucidate a distinct mechanism of nuclear translocation of a nanomaterial in cultured cells. We developed a nuclear-targeted probe <i>via</i> cloaking photoluminescent single-walled carbon nanotubes in a guanidinium-functionalized helical polycarbodiimide. We found that the nuclear entry of the nanotubes was mediated by the import receptor importin β without the aid of importin α and not by the more common importin α/β pathway. Additionally, the nanotube photoluminescence exhibited distinct red-shifting upon entry to the nucleus, potentially functioning as a reporter of the importin β-mediated nuclear transport process. This work delineates a noncanonical mechanism for nanomaterial delivery to the nucleus and provides a reporter for the study of nucleus-related pathologies

    A Carbon Nanotube Optical Sensor Reports Nuclear Entry <i>via</i> a Noncanonical Pathway

    No full text
    Single-walled carbon nanotubes are of interest in biomedicine for imaging and molecular sensing applications and as shuttles for various cargos such as chemotherapeutic drugs, peptides, proteins, and oligonucleotides. Carbon nanotube surface chemistry can be modulated for subcellular targeting while preserving photoluminescence for label-free visualization in complex biological environments, making them attractive materials for such studies. The cell nucleus is a potential target for many pathologies including cancer and infectious diseases. Understanding mechanisms of nanomaterial delivery to the nucleus may facilitate diagnostics, drug development, and gene-editing tools. Currently, there are no systematic studies to understand how these nanomaterials gain access to the nucleus. Herein, we developed a carbon nanotube based hybrid material that elucidate a distinct mechanism of nuclear translocation of a nanomaterial in cultured cells. We developed a nuclear-targeted probe <i>via</i> cloaking photoluminescent single-walled carbon nanotubes in a guanidinium-functionalized helical polycarbodiimide. We found that the nuclear entry of the nanotubes was mediated by the import receptor importin β without the aid of importin α and not by the more common importin α/β pathway. Additionally, the nanotube photoluminescence exhibited distinct red-shifting upon entry to the nucleus, potentially functioning as a reporter of the importin β-mediated nuclear transport process. This work delineates a noncanonical mechanism for nanomaterial delivery to the nucleus and provides a reporter for the study of nucleus-related pathologies

    Control of Carbon Nanotube Solvatochromic Response to Chemotherapeutic Agents

    No full text
    Alkylating agents such as cisplatin play an essential role in chemotherapy regimens, but initial and acquired resistance in many cancer types often dampen therapeutic response. The poor understanding of the mechanisms of resistance highlight the need for quantitative measurements of alkylating agent distribution at both the tissue and subcellular levels. Sensors for use in live animals and cells would allow for more effective study of drug action and resistance. Toward this end, single-walled carbon nanotubes suspended with single-stranded DNA have suitable optical properties for in vivo sensors, such as near-infrared emission and sensitivity to the local environment via solvatochromic responses. Currently, solvatochromic changes of such sensors have been limited by the chemical nature of the analyte, making it impossible to control the direction of energy emission changes. Here, we describe a new approach to control the direction and magnitude of solvatochromic responses of carbon nanotubes. We found that the alkylation of DNA on the nanotube surface can result in small changes in DNA conformation that allow the adsorption of amphiphiles to produce large differences (>14 nm) in response to different drugs. The technique surprisingly revealed differences among drugs upon alkylation. The ability to control carbon nanotube solvatochromism as desired may potentially expand the application of nanotube-based optical sensors for new classes of analytes

    Electrostatic Screening Modulates Analyte Binding and Emission of Carbon Nanotubes

    No full text
    Many nanomaterials are promising biosensor elements due to capabilities for transduction of biomolecular interactions into an electrical or optical signal. Certain nanomaterials have intrinsic charges and are thus susceptible to electrostatic forces that may enhance or attenuate their response. Here, using a combination of experimental and computational approaches, we found and characterized a critical role of the solvent salt conditions in determining the extent of optical changes due to anionic analyte interaction with an intrinsically responsive nanomaterial, single-walled carbon nanotubes. Using a well-characterized model anionic analyte, we found that monovalent salts enabled greater optical changes of a polyanion-bound carbon nanotube in a highly dose-dependent manner but not with a neutrally charged analyte. Molecular dynamics simulations were used to derive a quantitative understanding of this mechanism from a free-energy perspective. We also show that salt can be used to enhance the sensitivity of detection for a polyanionic analyte. These results suggest that electrostatic screening is an important parameter for intrinsically charged nanoparticle sensors and it may be tuned to control the response to analytes

    Measuring Uptake Dynamics of Multiple Identifiable Carbon Nanotube Species via High-Speed Confocal Raman Imaging of Live Cells

    No full text
    Carbon nanotube uptake was measured via high-speed confocal Raman imaging in live cells. Spatial and temporal tracking of two cell-intrinsic and nine nanotube-derived Raman bands was conducted simultaneously in RAW 264.7 macrophages. Movies resolved single (<i>n</i>, <i>m</i>) species, defects, and aggregation states of nanotubes transiently as well as the cell position, denoted by lipid and protein signals. This work portends the real-time molecular imaging of live cells and tissues using Raman spectroscopy, affording multiplexing and complete photostability
    corecore