12,029 research outputs found

    Hydrodynamics with Triangle Anomalies

    Full text link
    We consider the hydrodynamic regime of theories with quantum anomalies for global currents. We show that a hitherto discarded term in the conserve current is not only allowed by symmetries, but is in fact required by triangle anomalies and the second law of thermodynamics. This term leads to a number of new effects, one of which is chiral separation in a rotating fluid at nonzero chemical potential. The new kinetic coefficients can be expressed, in a unique fashion, through the anomalies coefficients and the equation of state. We briefly discuss the relevance of this new hydrodynamic term for physical situations, including heavy ion collisions.Comment: 4 pages; v2: error in Eq.(4) correcte

    Perspective review of what is needed for molecular-specific fluorescence-guided surgery

    Get PDF
    Molecular image-guided surgery has the potential for translating the tools of molecular pathology to real-time guidance in surgery. As a whole, there are incredibly positive indicators of growth, including the first United States Food and Drug Administration clearance of an enzyme-biosynthetic-activated probe for surgery guidance, and a growing number of companies producing agents and imaging systems. The strengths and opportunities must be continued but are hampered by important weaknesses and threats within the field. A key issue to solve is the inability of macroscopic imaging tools to resolve microscopic biological disease heterogeneity and the limitations in microscopic systems matching surgery workflow. A related issue is that parsing out true molecular-specific uptake from simple-enhanced permeability and retention is hard and requires extensive pathologic analysis or multiple in vivo tests, comparing fluorescence accumulation with standard histopathology and immunohistochemistry. A related concern in the field is the over-reliance on a finite number of chosen preclinical models, leading to early clinical translation when the probe might not be optimized for high intertumor variation or intratumor heterogeneity. The ultimate potential may require multiple probes, as are used in molecular pathology, and a combination with ultrahigh-resolution imaging and image recognition systems, which capture the data at a finer granularity than is possible by the surgeon. Alternatively, one might choose a more generalized approach by developing the tracer based on generic hallmarks of cancer to create a more "one-size-fits-all" concept, similar to metabolic aberrations as exploited in fluorodeoxyglucose-positron emission tomography (FDG-PET) (i.e., Warburg effect) or tumor acidity. Finally, methods to approach the problem of production cost minimization and regulatory approvals in a manner consistent with the potential revenue of the field will be important. In this area, some solid steps have been demonstrated in the use of fluorescent labeling commercial antibodies and separately in microdosing studies with small molecules. (C) The Authors

    Berry Curvature, Triangle Anomalies, and the Chiral Magnetic Effect in Fermi Liquids

    Full text link
    In a three-dimensional Fermi liquid, quasiparticles near the Fermi surface may possess a Berry curvature. We show that if the Berry curvature has a nonvanishing flux through the Fermi surface, the particle number associated with this Fermi surface has a triangle anomaly in external electromagnetic fields. We show how Landau's Fermi liquid theory should be modified to take into account the Berry curvature. We show that the "chiral magnetic effect" also emerges from the Berry curvature flux.Comment: 5 pages, published versio

    Quasi-static aberrations induced by laser guide stars in adaptive optics

    Get PDF
    Laser Guide Star Adaptive Optics (LGS AO) systems use the return from an artificial guide star to measure the wavefront aberrations in the direction of the science object. We observe quasi-static differences between the measured wavefront and the wavefront aberration of the science object. This paper quantifies and explains the source of the difference between the wavefronts measured using an LGS and a natural guide star at the W. M. Keck Observatory, which can be as high as 1000 nm RMS

    Colorectal cancer screening: From test performance to participant experience

    Get PDF
    __Abstract__ Influenza A virus is a member of the Orthomyxoviridae family. The influenza A viruses are classified on the basis of antigenic properties of the glycoproteins hemagglutinin (HA) and neuraminidase (NA) into 17 HA subtypes (H1-H17) and 10 NA subtypes (N1-N10) . These different subtypes of HA and NA are used in influenza A virus nomenclature, to discriminate viruses based on the surface glycoproteins (e.g. H5N1, H3N2). All subtypes with the exception of H17N10 circulate in wild birds, which are considered their natural reservoir. The H17N10 subtype has recently been isolated from bats, raising the possibility that birds are not the exclusive influenza virus reservoir. Influenza A virus is a single-stranded negative-sense segmented RNA virus, with a genome consisting of eight gene segments, that can encode up to 16 proteins (Fig 1a)

    Comment on Ï„\tau decay puzzle

    Full text link
    We analize the current data on Ï„\tau-lepton decays and show that they are consistent with the Standard ModelComment: 5 pages, 1 figure (available from de authors), Latex, preprint IFT-P.022/9

    Single-electron tunneling in InP nanowires

    Get PDF
    We report on the fabrication and electrical characterization of field-effect devices based on wire-shaped InP crystals grown from Au catalyst particles by a vapor-liquid-solid process. Our InP wires are n-type doped with diameters in the 40-55 nm range and lengths of several microns. After being deposited on an oxidized Si substrate, wires are contacted individually via e-beam fabricated Ti/Al electrodes. We obtain contact resistances as low as ~10 kOhm, with minor temperature dependence. The distance between the electrodes varies between 0.2 and 2 micron. The electron density in the wires is changed with a back gate. Low-temperature transport measurements show Coulomb-blockade behavior with single-electron charging energies of ~1 meV. We also demonstrate energy quantization resulting from the confinement in the wire.Comment: 4 pages, 3 figure
    • …
    corecore