9 research outputs found
Two-proton overlap functions in the Jastrow correlation method and cross section of the OC reaction
Using the relationship between the two-particle overlap functions (TOF's) and
the two-body density matrix (TDM), the TOF's for the
OC reaction are calculated on the
basis of a TDM obtained within the Jastrow correlation method. The main
contributions of the removal of and pairs from O
are considered in the calculation of the cross section of the
OC reaction using the Jastrow TOF's
which include short-range correlations (SRC). The results are compared with the
cross sections calculated with different theoretical treatments of the TOF's.Comment: 10 pages, 8 figures, ReVTeX
One Body Density Matrix, Natural Orbits and Quasi Hole States in 16O and 40Ca
The one body density matrix, momentum distribution, natural orbits and quasi
hole states of 16O and 40Ca are analyzed in the framework of the correlated
basis function theory using state dependent correlations with central and
tensor components. Fermi hypernetted chain integral equations and single
operator chain approximation are employed to sum cluster diagrams at all
orders. The optimal trial wave function is determined by means of the
variational principle and the realistic Argonne v8' two-nucleon and Urbana IX
three-nucleon interactions. The correlated momentum distributions are in good
agreement with the available variational Monte Carlo results and show the well
known enhancement at large momentum values with respect to the independent
particle model. Diagonalization of the density matrix provides the natural
orbits and their occupation numbers. Correlations deplete the occupation number
of the first natural orbitals by more than 10%. The first following ones result
instead occupied by a few percent. Jastrow correlations lower the spectroscopic
factors of the valence states by a few percent (~1-3%) and an additional ~8-12%
depletion is provided by tensor correlations. It is confirmed that short range
correlations do not explain the spectroscopic factors extracted from (e,e'p)
experiments. 2h-1p perturbative corrections in the correlated basis are
expected to provide most of the remaining strength, as in nuclear matter.Comment: 25 pages, 9 figures. Submitted to Phys.Rev.