399 research outputs found

    Periodic orbit quantization of the Sinai billiard in the small scatterer limit

    Get PDF
    We consider the semiclassical quantization of the Sinai billiard for disk radii R small compared to the wave length 2 pi/k. Via the application of the periodic orbit theory of diffraction we derive the semiclassical spectral determinant. The limitations of the derived determinant are studied by comparing it to the exact KKR determinant, which we generalize here for the A_1 subspace. With the help of the Ewald resummation method developed for the full KKR determinant we transfer the complex diffractive determinant to a real form. The real zeros of the determinant are the quantum eigenvalues in semiclassical approximation. The essential parameter is the strength of the scatterer c=J_0(kR)/Y_0(kR). Surprisingly, this can take any value between plus and minus infinity within the range of validity of the diffractive approximation kR <<4. We study the statistics exhibited by spectra for fixed values of c. It is Poissonian for |c|=infinity, provided the disk is placed inside a rectangle whose sides obeys some constraints. For c=0 we find a good agreement of the level spacing distribution with GOE, whereas the form factor and two-point correlation function are similar but exhibit larger deviations. By varying the parameter c from 0 to infinity the level statistics interpolates smoothly between these limiting cases.Comment: 17 pages LaTeX, 5 postscript figures, submitted to J. Phys. A: Math. Ge

    Escape from noisy intermittent repellers

    Full text link
    Intermittent or marginally-stable repellers are commonly associated with a power law decay in the survival fraction. We show here that the presence of weak additive noise alters the spectrum of the Perron - Frobenius operator significantly giving rise to exponential decays even in systems that are otherwise regular. Implications for ballistic transport in marginally stable miscrostructures are briefly discussed.Comment: 3 ps figures include

    On the duality between periodic orbit statistics and quantum level statistics

    Full text link
    We discuss consequences of a recent observation that the sequence of periodic orbits in a chaotic billiard behaves like a poissonian stochastic process on small scales. This enables the semiclassical form factor Ksc(τ)K_{sc}(\tau) to agree with predictions of random matrix theories for other than infinitesimal τ\tau in the semiclassical limit.Comment: 8 pages LaTe

    Lyapunov exponents and anomalous diffusion of a Lorentz gas with infinite horizon using approximate zeta functions

    Full text link
    We compute the Lyapunov exponent, generalized Lyapunov exponents and the diffusion constant for a Lorentz gas on a square lattice, thus having infinite horizon. Approximate zeta functions, written in terms of probabilities rather than periodic orbits, a re used in order to avoid the convergence problems of cycle expansions. The emphasis is on the relation between the analytic structure of the zeta function, where a branch cut plays an important role, and the asymptotic dynamics of the system. We find a diverging diffusion constant D(t)logtD(t) \sim \log t and a phase transition for the generalized Lyapunov exponents.Comment: 14 pages LaTeX, figs 2-3 on .uu file, fig 1 available from autho

    Spectral statistics in chaotic systems with a point interaction

    Full text link
    We consider quantum systems with a chaotic classical limit that are perturbed by a point-like scatterer. The spectral form factor K(tau) for these systems is evaluated semiclassically in terms of periodic and diffractive orbits. It is shown for order tau^2 and tau^3 that off-diagonal contributions to the form factor which involve diffractive orbits cancel exactly the diagonal contributions from diffractive orbits, implying that the perturbation by the scatterer does not change the spectral statistic. We further show that parametric spectral statistics for these systems are universal for small changes of the strength of the scatterer.Comment: LaTeX, 21 pages, 7 figures, small corrections, new references adde

    Stabilization of the Yang-Mills chaos in non-Abelian Born-Infeld theory

    Full text link
    We investigate dynamics of the homogeneous time-dependent SU(2) Yang-Mills fields governed by the non-Abelian Born-Infeld lagrangian which arises in superstring theory as a result of summation of all orders in the string slope parameter α\alpha'. It is shown that generically the Born-Infeld dynamics is less chaotic than that in the ordinary Yang-Mills theory, and at high enough field strength the Yang-Mills chaos is stabilized. More generally, a smothering effect of the string non-locality on behavior of classical fields is conjectured.Comment: 7 pages, 5 figure

    Symmetry Decomposition of Potentials with Channels

    Full text link
    We discuss the symmetry decomposition of the average density of states for the two dimensional potential V=x2y2V=x^2y^2 and its three dimensional generalisation V=x2y2+y2z2+z2x2V=x^2y^2+y^2z^2+z^2x^2. In both problems, the energetically accessible phase space is non-compact due to the existence of infinite channels along the axes. It is known that in two dimensions the phase space volume is infinite in these channels thus yielding non-standard forms for the average density of states. Here we show that the channels also result in the symmetry decomposition having a much stronger effect than in potentials without channels, leading to terms which are essentially leading order. We verify these results numerically and also observe a peculiar numerical effect which we associate with the channels. In three dimensions, the volume of phase space is finite and the symmetry decomposition follows more closely that for generic potentials --- however there are still non-generic effects related to some of the group elements

    Geometrical theory of diffraction and spectral statistics

    Full text link
    We investigate the influence of diffraction on the statistics of energy levels in quantum systems with a chaotic classical limit. By applying the geometrical theory of diffraction we show that diffraction on singularities of the potential can lead to modifications in semiclassical approximations for spectral statistics that persist in the semiclassical limit 0\hbar \to 0. This result is obtained by deriving a classical sum rule for trajectories that connect two points in coordinate space.Comment: 14 pages, no figure, to appear in J. Phys.

    How Chaotic is the Stadium Billiard? A Semiclassical Analysis

    Full text link
    The impression gained from the literature published to date is that the spectrum of the stadium billiard can be adequately described, semiclassically, by the Gutzwiller periodic orbit trace formula together with a modified treatment of the marginally stable family of bouncing ball orbits. I show that this belief is erroneous. The Gutzwiller trace formula is not applicable for the phase space dynamics near the bouncing ball orbits. Unstable periodic orbits close to the marginally stable family in phase space cannot be treated as isolated stationary phase points when approximating the trace of the Green function. Semiclassical contributions to the trace show an \hbar - dependent transition from hard chaos to integrable behavior for trajectories approaching the bouncing ball orbits. A whole region in phase space surrounding the marginal stable family acts, semiclassically, like a stable island with boundaries being explicitly \hbar-dependent. The localized bouncing ball states found in the billiard derive from this semiclassically stable island. The bouncing ball orbits themselves, however, do not contribute to individual eigenvalues in the spectrum. An EBK-like quantization of the regular bouncing ball eigenstates in the stadium can be derived. The stadium billiard is thus an ideal model for studying the influence of almost regular dynamics near marginally stable boundaries on quantum mechanics.Comment: 27 pages, 6 figures, submitted to J. Phys.

    Signatures of Classical Periodic Orbits on a Smooth Quantum System

    Full text link
    Gutzwiller's trace formula and Bogomolny's formula are applied to a non--specific, non--scalable Hamiltonian system, a two--dimensional anharmonic oscillator. These semiclassical theories reproduce well the exact quantal results over a large spatial and energy range.Comment: 12 pages, uuencoded postscript file (1526 kb
    corecore