399 research outputs found
Periodic orbit quantization of the Sinai billiard in the small scatterer limit
We consider the semiclassical quantization of the Sinai billiard for disk
radii R small compared to the wave length 2 pi/k. Via the application of the
periodic orbit theory of diffraction we derive the semiclassical spectral
determinant. The limitations of the derived determinant are studied by
comparing it to the exact KKR determinant, which we generalize here for the A_1
subspace. With the help of the Ewald resummation method developed for the full
KKR determinant we transfer the complex diffractive determinant to a real form.
The real zeros of the determinant are the quantum eigenvalues in semiclassical
approximation. The essential parameter is the strength of the scatterer
c=J_0(kR)/Y_0(kR). Surprisingly, this can take any value between plus and minus
infinity within the range of validity of the diffractive approximation kR <<4.
We study the statistics exhibited by spectra for fixed values of c. It is
Poissonian for |c|=infinity, provided the disk is placed inside a rectangle
whose sides obeys some constraints. For c=0 we find a good agreement of the
level spacing distribution with GOE, whereas the form factor and two-point
correlation function are similar but exhibit larger deviations. By varying the
parameter c from 0 to infinity the level statistics interpolates smoothly
between these limiting cases.Comment: 17 pages LaTeX, 5 postscript figures, submitted to J. Phys. A: Math.
Ge
Escape from noisy intermittent repellers
Intermittent or marginally-stable repellers are commonly associated with a
power law decay in the survival fraction. We show here that the presence of
weak additive noise alters the spectrum of the Perron - Frobenius operator
significantly giving rise to exponential decays even in systems that are
otherwise regular. Implications for ballistic transport in marginally stable
miscrostructures are briefly discussed.Comment: 3 ps figures include
On the duality between periodic orbit statistics and quantum level statistics
We discuss consequences of a recent observation that the sequence of periodic
orbits in a chaotic billiard behaves like a poissonian stochastic process on
small scales. This enables the semiclassical form factor to
agree with predictions of random matrix theories for other than infinitesimal
in the semiclassical limit.Comment: 8 pages LaTe
Lyapunov exponents and anomalous diffusion of a Lorentz gas with infinite horizon using approximate zeta functions
We compute the Lyapunov exponent, generalized Lyapunov exponents and the
diffusion constant for a Lorentz gas on a square lattice, thus having infinite
horizon. Approximate zeta functions, written in terms of probabilities rather
than periodic orbits, a re used in order to avoid the convergence problems of
cycle expansions. The emphasis is on the relation between the analytic
structure of the zeta function, where a branch cut plays an important role, and
the asymptotic dynamics of the system. We find a diverging diffusion constant
and a phase transition for the generalized Lyapunov
exponents.Comment: 14 pages LaTeX, figs 2-3 on .uu file, fig 1 available from autho
Spectral statistics in chaotic systems with a point interaction
We consider quantum systems with a chaotic classical limit that are perturbed
by a point-like scatterer. The spectral form factor K(tau) for these systems is
evaluated semiclassically in terms of periodic and diffractive orbits. It is
shown for order tau^2 and tau^3 that off-diagonal contributions to the form
factor which involve diffractive orbits cancel exactly the diagonal
contributions from diffractive orbits, implying that the perturbation by the
scatterer does not change the spectral statistic. We further show that
parametric spectral statistics for these systems are universal for small
changes of the strength of the scatterer.Comment: LaTeX, 21 pages, 7 figures, small corrections, new references adde
Stabilization of the Yang-Mills chaos in non-Abelian Born-Infeld theory
We investigate dynamics of the homogeneous time-dependent SU(2) Yang-Mills
fields governed by the non-Abelian Born-Infeld lagrangian which arises in
superstring theory as a result of summation of all orders in the string slope
parameter . It is shown that generically the Born-Infeld dynamics is
less chaotic than that in the ordinary Yang-Mills theory, and at high enough
field strength the Yang-Mills chaos is stabilized. More generally, a smothering
effect of the string non-locality on behavior of classical fields is
conjectured.Comment: 7 pages, 5 figure
Symmetry Decomposition of Potentials with Channels
We discuss the symmetry decomposition of the average density of states for
the two dimensional potential and its three dimensional
generalisation . In both problems, the energetically
accessible phase space is non-compact due to the existence of infinite channels
along the axes. It is known that in two dimensions the phase space volume is
infinite in these channels thus yielding non-standard forms for the average
density of states. Here we show that the channels also result in the symmetry
decomposition having a much stronger effect than in potentials without
channels, leading to terms which are essentially leading order. We verify these
results numerically and also observe a peculiar numerical effect which we
associate with the channels. In three dimensions, the volume of phase space is
finite and the symmetry decomposition follows more closely that for generic
potentials --- however there are still non-generic effects related to some of
the group elements
Geometrical theory of diffraction and spectral statistics
We investigate the influence of diffraction on the statistics of energy
levels in quantum systems with a chaotic classical limit. By applying the
geometrical theory of diffraction we show that diffraction on singularities of
the potential can lead to modifications in semiclassical approximations for
spectral statistics that persist in the semiclassical limit . This
result is obtained by deriving a classical sum rule for trajectories that
connect two points in coordinate space.Comment: 14 pages, no figure, to appear in J. Phys.
How Chaotic is the Stadium Billiard? A Semiclassical Analysis
The impression gained from the literature published to date is that the
spectrum of the stadium billiard can be adequately described, semiclassically,
by the Gutzwiller periodic orbit trace formula together with a modified
treatment of the marginally stable family of bouncing ball orbits. I show that
this belief is erroneous. The Gutzwiller trace formula is not applicable for
the phase space dynamics near the bouncing ball orbits. Unstable periodic
orbits close to the marginally stable family in phase space cannot be treated
as isolated stationary phase points when approximating the trace of the Green
function. Semiclassical contributions to the trace show an - dependent
transition from hard chaos to integrable behavior for trajectories approaching
the bouncing ball orbits. A whole region in phase space surrounding the
marginal stable family acts, semiclassically, like a stable island with
boundaries being explicitly -dependent. The localized bouncing ball
states found in the billiard derive from this semiclassically stable island.
The bouncing ball orbits themselves, however, do not contribute to individual
eigenvalues in the spectrum. An EBK-like quantization of the regular bouncing
ball eigenstates in the stadium can be derived. The stadium billiard is thus an
ideal model for studying the influence of almost regular dynamics near
marginally stable boundaries on quantum mechanics.Comment: 27 pages, 6 figures, submitted to J. Phys.
Signatures of Classical Periodic Orbits on a Smooth Quantum System
Gutzwiller's trace formula and Bogomolny's formula are applied to a
non--specific, non--scalable Hamiltonian system, a two--dimensional anharmonic
oscillator. These semiclassical theories reproduce well the exact quantal
results over a large spatial and energy range.Comment: 12 pages, uuencoded postscript file (1526 kb
- …