86 research outputs found
Re-calibration of the MAGIC model with data from the National Lake Survey 2019. Results from phase 2
Prosjektleder: Ăyvind KasteThe biogeochemical MAGIC model has been applied to the data from the 1995 and 2019 surveys of 1000 Norwegian lakes. The work is a follow-up of a modelling exercise that was done in 2022, with improved input data and with new deposition estimates generated from NILUâs deposition station network. The results indicated that the new deposition data from NILU gave slightly better simulated results (compared to the observed) than those with the deposition estimates from EMEP used in 2022. For future work we recommend that the calibrations to the 2019 data driven by the deposition data from NILUâs deposition station network are used.Norwegian Environment AgencypublishedVersio
The politicisation of evaluation: constructing and contesting EU policy performance
Although systematic policy evaluation has been conducted for decades and has been growing strongly within the European Union (EU) institutions and in the member states, it remains largely underexplored in political science literatures. Extant work in political science and public policy typically focuses on elements such as agenda setting, policy shaping, decision making, or implementation rather than evaluation. Although individual pieces of research on evaluation in the EU have started to emerge, most often regarding policy âeffectivenessâ (one criterion among many in evaluation), a more structured approach is currently missing. This special issue aims to address this gap in political science by focusing on four key focal points: evaluation institutions (including rules and cultures), evaluation actors and interests (including competencies, power, roles and tasks), evaluation design (including research methods and theories, and their impact on policy design and legislation), and finally, evaluation purpose and use (including the relationships between discourse and scientific evidence, political attitudes and strategic use). The special issue considers how each of these elements contributes to an evolving governance system in the EU, where evaluation is playing an increasingly important role in decision making
"Drop in" gastroscopy outpatient clinic - experience after 9 months
<p>Abstract</p> <p>Background</p> <p>Logistics handling referrals for gastroscopy may be more time consuming than the examination itself. For the patient, "drop in" gastroscopy may reduce uncertainty, inadequate therapy and time off work.</p> <p>Methods</p> <p>After an 8-9 month run-in period we asked patients, hospital staff and GPs to fill in a questionnaire to evaluate their experience with "drop in" gastroscopy and gastroscopy by appointment, respectively. The diagnostic gain was evaluated.</p> <p>Results</p> <p>112 patients had "drop in" gastroscopy and 101 gastroscopy by appointment. The number of "drop in" patients varied between 3 and 12 per day (mean 6.5). Mean time from first GP consultation to gastroscopy was 3.6 weeks in the "drop in" group and 14 weeks in the appointment group. The half-yearly number of outpatient gastroscopies increased from 696 before introducing "drop in" to 1022 after (47% increase) and the proportion of examinations with pathological findings increased from 42% to 58%. Patients and GPs expressed great satisfaction with "drop in". Hospital staff also acclaimed although it caused more unpredictable working days with no additional staff.</p> <p>Conclusions</p> <p>"Drop in" gastroscopy was introduced without increase in staff. The observed increase in gastroscopies was paralleled by a similar increase in pathological findings without any apparent disadvantages for other groups of patients. This should legitimise "drop in" outpatient gastroscopies, but it requires meticulous observation of possible unwanted effects when implemented.</p
Protocol for a phase 1 homeopathic drug proving trial
<p>Abstract</p> <p>Background</p> <p>This study protocol adapts the traditional homeopathic drug proving methodology to a modern clinical trial design.</p> <p>Method</p> <p>Multi-centre, randomised, double-blind, placebo-controlled phase 1 trial with 30 healthy volunteers. The study consists of a seven day run-in period, a five day intervention period and a 16 day post-intervention observation period. Subjects, investigators and the statisticians are blinded from the allocation to the study arm and from the identity of the homeopathic drug. The intervention is a highly diluted homeopathic drug (potency C12 = 10<sup>24</sup>), Dose: 5 globules taken 5 times per day over a maximum period of 5 days. The placebo consists of an optically identical carrier substance (sucrose globules). Subjects document the symptoms they experience in a semi-structured online diary. The primary outcome parameter is the number of specific symptoms that characterise the intervention compared to the placebo after a period of three weeks. Secondary outcome parameters are qualitative differences in profiles of characteristic and proving symptoms and the total number of all proving symptoms. The number of symptoms will be quantitatively analysed on an intention-to-treat basis using ANCOVA with the subject's expectation and baseline values as covariates. Content analysis according to Mayring is adapted to suit the homeopathic qualitative analysis procedure.</p> <p>Discussion</p> <p>Homeopathic drug proving trials using the terminology of clinical trials according GCP and fulfilling current requirements for research under the current drug regulations is feasible. However, within the current regulations, homeopathic drug proving trials are classified as phase 1 trials, although their aim is not to explore the safety and pharmacological dynamics of the drug, but rather to find clinical indications according to the theory of homeopathy. To avoid bias, it is necessary that neither the subjects nor the investigators know the identity of the drug. This requires a modification to the informed consent process and blinded study materials. Because it is impossible to distinguish between adverse events and proving symptoms, both must be documented together.</p> <p>Trial registration</p> <p>ClinicalTrials.gov identifier: NCT01061229.</p
On modified simple reacting spheres kinetic model for chemically reactive gases
VersĂŁo dos autores para esta publicação.We consider the modiffed simple reacting spheres (MSRS) kinetic model that, in addition to the conservation of energy and momentum, also preserves the angular momentum in the collisional processes. In contrast to the line-of-center models or chemical reactive models considered in [1], in the MSRS (SRS) kinetic models, the microscopic reversibility (detailed balance) can be easily shown to be satisfied, and thus all mathematical aspects of the model can be fully justi ed. In the MSRS model, the molecules behave as if they were single mass points with two internal states. Collisions may alter the internal states of the molecules, and this occurs when the kinetic energy associated with the reactive motion exceeds the activation energy. Reactive and non-reactive collision events are considered to be hard spheres-like. We consider a four component mixture A, B, A*, B*, in which the chemical reactions are of the type A + B = A* + B*, with A* and B* being distinct species from A and B. We provide fundamental physical and mathematical properties of the MSRS model, concerning the consistency of the model, the entropy inequality for the reactive system, the characterization of the equilibrium solutions, the macroscopic setting of the model and the spatially homogeneous evolution. Moreover, we show that the MSRS kinetic model reduces to the previously considered SRS model (e.g., [2], [3]) if the reduced masses of the reacting pairs are the same before and after collisions, and state in the Appendix the more important properties of the SRS system.Fundação para a CiĂȘncia e a Tecnologi
Research on nonlinear optical materials: an assessment
The seven papers making up this assessment are based on the Workshop on Nonlinear Optical Materials held in April 1986
- âŠ