1,064 research outputs found

    Progression of myopathology in Kearns-Sayre syndrome

    Get PDF
    We report on the progression of myopathology by comparing two biopsies from a patient with a Kearns-Sayre-Syndrome. The first biopsy was taken in 1979 and showed 10% ragged-red fibers. Myopathic changes were slight including internal nuclei and fiber splitting in 10% of the fibers. Electron microscopy revealed typical mitochondrial abnormalities with regard to number and shape. In 1989 a second biopsy was performed for an extended analysis of mitochondrial DNA. This time less than 5% of all fibers were ragged-red. Severe myopathic changes could be detected which so far has rarely been reported in mitochondrial cytopathy

    Passive mechanical features of single fibers from human muscle biopsies – effects of storage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to investigate the effect of storage of human muscle biopsies on passive mechanical properties.</p> <p>Methods</p> <p>Stress-strain analysis accompanied by laser diffraction assisted sarcomere length measurement was performed on single muscle fibres from fresh samples and compared with single fibres from stored samples (-20°C, 4 weeks) with the same origin as the corresponding fresh sample. Basic morphological analysis, including cross sectional area (CSA) measurement, fibre diameter measurement, fibre occupancy calculation and overall morphology evaluation was done.</p> <p>Results</p> <p>Statistical analysis of tangent values in stress-strain curves, corresponding to the elastic modulus of single muscle fibres, did not differ when comparing fresh and stored samples from the same type of muscle. Regardless of the preparation procedure, no significant differences were found, neither in fibre diameter nor the relation between muscle fibres and extra-cellular matrix measured under light microscopy.</p> <p>Conclusion</p> <p>We conclude that muscle fibre structure and mechanics are relatively insensitive to the storage procedures used and that the different preparations are interchangeable without affecting passive mechanical properties. This provides a mobility of the method when harvesting muscle biopsies away from the laboratory.</p

    Understanding the molecular consequences of inherited muscular dystrophies:advancements through proteomic experimentation

    Get PDF
    Introduction: Proteomic techniques offer insights into the molecular perturbations occurring in muscular-dystrophies (MD). Revisiting published datasets can highlight conserved downstream molecular alterations, which may be worth re-assessing to determine whether their experimental manipulation is capable of modulating disease severity. Areas covered: Here, we review the MD literature, highlighting conserved molecular insights warranting mechanistic investigation for therapeutic potential. We also describe a workflow currently proving effective for efficient identification of biomarkers & therapeutic targets in other neurodegenerative conditions, upon which future MD proteomic investigations could be modelled. Expert commentary: Studying disease models can be useful for identifying biomarkers and model specific degenerative cascades, but rarely offer translatable mechanistic insights into disease pathology. Conversely, direct analysis of human samples undergoing degeneration presents challenges derived from complex chronic degenerative molecular processes. This requires a carefully planed & reproducible experimental paradigm accounting for patient selection through to grouping by disease severity and ending with proteomic data filtering and processing

    The puzzle of TRPV4 channelopathies

    Full text link

    Loss-of-function genetic diseases and the concept of pharmaceutical targets

    Get PDF
    The biomedical world relies heavily on the definition of pharmaceutical targets as an essential step in the drug design process. It is therefore tempting to apply this model to genetic diseases as well. However, whereas the model applies well to gain-of-function genetic diseases, it is less suited to most loss-of-function genetic diseases. Most common diseases, as well as gain-of-function genetic diseases, are characterized by the activation of specific pathways or the ectopic activity of proteins, which make well identified targets. By contrast, loss-of-function genetic diseases are caused by the impairment of one protein, with potentially distributed consequences. For such diseases, the definition of a pharmaceutical target is less precise, and the identification of pharmaceutically-relevant targets may be difficult. This critical but largely ignored aspect of loss-of-function genetic diseases should be taken into consideration to avoid the commitment of resources to inappropriate strategies in the search for treatments

    Adaptations in the Temporalis Muscles of Rabbits after Masseter Muscle Removal

    Full text link
    Masseter muscles were surgically removed in six young female rabbits so that we could study adaptations of the superficial temporalis muscles (ST) to increased functional requirements. Eight weeks following surgery, we used morphological measurements, histochemistry, contractile properties in situ, and occlusal force in vivo to compare the muscles in the experimental animals and six control rabbits. Analysis of the results demonstrated a decrease in fatigability of ST after masseter myectomy. Incisal occlusal force decreased by 65% during the first two weeks, and no recovery was observed during the following six weeks. At eight weeks post-surgery, the mass, twitch tensions, and tetanic tensions of ST were not significantly different from those of the controls. An increase in the percent of the cross-sectional area composed of fast fatigue-resistant fibers, a slower time-to-peak twitch tension, and a decrease in fatigability suggest an increase in oxidative metabolism. Analysis of these results suggests that muscles used for highly repetitious activities with submaximal loadings adapt to increased functional requirements by increasing fatigue-resistant properties.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68261/2/10.1177_00220345860650110201.pd

    Which circulating antioxidant vitamins are confounded by socioeconomic deprivation? The MIDSPAN family study

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; Antioxidant vitamins are often described as having “independent” associations with risk of cancer, cardiovascular disease (CVD) and mortality. We aimed to compare to what extent a range of antioxidant vitamins and carotenoids are associated with adulthood and childhood markers of socioeconomic deprivation and to adverse lifestyle factors.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods and Findings:&lt;/b&gt; Socioeconomic and lifestyle measures were available in 1040 men and 1298 women from the MIDSPAN Family Study (30–59 years at baseline) together with circulating levels of vitamins A, C, E, and carotenoids (α-carotene, β-carotene, lutein and lycopene). Markers of socioeconomic deprivation in adulthood were consistently as strongly associated with lower vitamin C and carotenoid levels as markers of adverse lifestyle; the inverse association with overcrowding was particularly consistent (vitamin C and carotenoids range from 19.1% [95% CI 30.3–6.0] to 38.8% [49.9–25.3] lower among those in overcrowded residencies). These associations were consistent after adjusting for month, classical CVD risk factors, body mass index, physical activity, vitamin supplements, dietary fat and fibre intake. Similar, but weaker, associations were seen for childhood markers of deprivation. The association of vitamin A or E were strikingly different; several adult adverse lifestyle factors associated with higher levels of vitamin A and E, including high alcohol intake for vitamin A (9.5% [5.7–13.5]) and waist hip ratio for vitamin E (9.5% [4.8–14.4]), with the latter associations partially explained by classical risk factors, particularly cholesterol levels.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; Plasma vitamin C and carotenoids have strong inverse associations with adulthood markers of social deprivation, whereas vitamin A and E appear positively related to specific adverse lifestyle factors. These findings should help researchers better contextualize blood antioxidant vitamin levels by illustrating the potential limitations associated with making causal inferences without consideration of social deprivation.&lt;/p&gt

    Type-selective muscular degeneration promotes infiltrative growth of intramuscular lipoma

    Get PDF
    BACKGROUND: Intramuscular lipoma is a relatively common benign neoplasm that is occasionally described as an infiltrating lipoma. Typical benign tumors show a clear margin, however, the infiltrative growth pattern of this lipoma mimics that of a malignant tumor. Although its growth has an effect on muscle bundles and it is known to never metastasize, the mechanism of infiltrative growth is not well understood. Previously, little attention has been paid to pathogenic features of muscle fibers around an intramuscular lipoma. METHODS: In the present study, we focused on pathologic changes of the surrounding skeletal muscles especially to the degenerative features of involving muscular types, and evaluate the role of type-selective muscular degeneration for the infiltrative growth of intramuscular lipomas. Following a review of the medical records in our institute, 17 lesions containing muscle tissues in their specimens (15 infiltrating lipomas, 2 well-circumscribed lipomas) were analyzed immunohistochemically. The tumor from the most recent case was also subjected to ultrastructural analysis. Two cases of the traumatic muscle damage were also evaluated as the control experiments. RESULTS: These analyses revealed type-selective muscle involution in 11 of 17 intramuscular lipomas and in 10 of 11 of the infiltrative type, with an involving pattern that resembled that of a neurogenic or myogenic disorder. Immunoreactivity to cathepsin-D, a lysosomal catabolic enzyme, was increased in the involved muscle fibers. Subsarcolemmal vacuoles in the muscle fibers of the peripheral areas were also positive for cathepsin-D, while degenerative findings were not visually apparent in these areas. Ultrastructural analysis revealed degenerative changes in those fibers. Neither positive staining for cathepsin-D nor type-selective atrophy was detected in the sections of traumatic muscle damage. CONCLUSIONS: Our findings suggest that type-selective muscular degeneration and endomysial fatty growth as a result of atrophy may modulate the infiltrating growth characteristic of intramuscular lipoma

    Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs

    Get PDF
    Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog

    Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Get PDF
    Background Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts
    corecore