44 research outputs found

    Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation

    Get PDF
    Contains fulltext : 81835.pdf (Publisher’s version ) (Open Access)BACKGROUND: The repeatability and interchangeability of imaging devices measuring central corneal thickness (CCT) and anterior chamber depth (ACD) are important in the assessment of patients considering refractive surgery. The purpose of this study was to investigate the agreement of CCT and ACD measurements using three imaging technologies in healthy eyes and in eyes after phakic intraocular lens implantation (pIOL). METHODS: In this comparative study, CCT and ACD were measured using anterior segment optical coherence tomography (AS-OCT), Orbscan II, and Pentacam in 33 healthy volunteers (66 eyes) and 22 patients (42 eyes) after pIOL implantation. Intraobserver repeatability was evaluated for all three devices in the healthy volunteer group. RESULTS: Pairwise comparison of CCT measurements showed significant differences between all devices (P < 0.001), except for the AS-OCT and Orbscan II in the healthy volunteer group (P = 0.422) and the Orbscan II and Pentacam in the pIOL group (P = 0.214). ACD measurements demonstrated significant differences between all pairwise comparisons in both groups (P < or = 0.001). Intraobserver reliability was high for CCT and ACD measurements in the healthy volunteer group, with coefficients of variation ranging from 0.6% to 1.2% and 0.4% to 0.5% respectively. CONCLUSIONS: CCT and ACD measurements using AS-OCT, Orbscan II, and Pentacam demonstrated high intraobserver reliability. However, these devices should not be used interchangeably for measurements of CCT and ACD in healthy subject and patients after pIOL implantation

    Function and fate of myofibroblasts after myocardial infarction.

    Get PDF
    The importance of cardiac fibroblasts in the regulation of myocardial remodelling following myocardial infarction (MI) is becoming increasingly recognised. Studies over the last few decades have reinforced the concept that cardiac fibroblasts are much more than simple homeostatic regulators of extracellular matrix turnover, but are integrally involved in all aspects of the repair and remodelling of the heart that occurs following MI. The plasticity of fibroblasts is due in part to their ability to undergo differentiation into myofibroblasts. Myofibroblasts are specialised cells that possess a more contractile and synthetic phenotype than fibroblasts, enabling them to effectively repair and remodel the cardiac interstitium to manage the local devastation caused by MI. However, in addition to their key role in cardiac restoration and healing, persistence of myofibroblast activation can drive pathological fibrosis, resulting in arrhythmias, myocardial stiffness and progression to heart failure. The aim of this review is to give an appreciation of both the beneficial and detrimental roles of the myofibroblast in the remodelling heart, to describe some of the major regulatory mechanisms controlling myofibroblast differentiation including recent advances in the microRNA field, and to consider how this cell type could be exploited therapeutically
    corecore