69 research outputs found
Lung Function after the Minimal Invasive Pectus Excavatum Repair (Nuss Procedure)
Background The Nuss procedure was introduced at our center in 1999. The operation was mainly performed for cosmesis. Little information is available regarding the influence of this operation on lung function. Methods The aim of this study, a prospective analysis, was to analyze the effect of the Nuss procedure on lung function variables. Between 1999 and 2007 a total of 203 patients with pectus excavatum were treated with the Nuss procedure, of whom 145 (104 male, 41 female) were located at Emma Children’s Hospital. In the latter subset of consecutive patients, static lung function variables [total lung capacity (TLC), functional residual capacity (FRC), vital capacity (VC)] and dynamic lung function variables [forced expired volume in 1 s (FEV1), maximum expiratory flow (MEF50)] were performed using spirometry and body box measurements at four time points: prior to operation Some of these data were presented at the International Surgical Week
Paracellular Absorption: A Bat Breaks the Mammal Paradigm
Bats tend to have less intestinal tissue than comparably sized nonflying mammals. The corresponding reduction in intestinal volume and hence mass of digesta carried is advantageous because the costs of flight increase with load carried and because take-off and maneuverability are diminished at heavier masses. Water soluble compounds, such as glucose and amino acids, are absorbed in the small intestine mainly via two pathways, the transporter-mediated transcellular and the passive, paracellular pathways. Using the microchiropteran bat Artibeus literatus (mean mass 80.6±3.7 g), we tested the predictions that absorption of water-soluble compounds that are not actively transported would be extensive as a compensatory mechanism for relatively less intestinal tissue, and would decline with increasing molecular mass in accord with sieve-like paracellular absorption. Using a standard pharmacokinetic technique, we fed, or injected intraperitonealy the metabolically inert carbohydrates L-rhamnose (molecular mass = 164 Da) and cellobiose (molecular mass = 342 Da) which are absorbed only by paracellular transport, and 3-O-methyl-D-glucose (3OMD-glucose) which is absorbed via both mediated (active) and paracellular transport. As predicted, the bioavailability of paracellular probes declined with increasing molecular mass (rhamnose, 90±11%; cellobiose, 10±3%, n = 8) and was significantly higher in bats than has been reported for laboratory rats and other mammals. In addition, absorption of 3OMD-glucose was high (96±11%). We estimated that the bats rely on passive, paracellular absorption for more than 70% of their total glucose absorption, much more than in non-flying mammals. Although possibly compensating for less intestinal tissue, a high intestinal permeability that permits passive absorption might be less selective than a carrier-mediated system for nutrient absorption and might permit toxins to be absorbed from plant and animal material in the intestinal lumen
Anorectal malformations
Anorectal malformations comprise a wide spectrum of diseases, which can affect boys and girls, and involve the distal anus and rectum as well as the urinary and genital tracts. They occur in approximately 1 in 5000 live births. Defects range from the very minor and easily treated with an excellent functional prognosis, to those that are complex, difficult to manage, are often associated with other anomalies, and have a poor functional prognosis. The surgical approach to repairing these defects changed dramatically in 1980 with the introduction of the posterior sagittal approach, which allowed surgeons to view the anatomy of these defects clearly, to repair them under direct vision, and to learn about the complex anatomic arrangement of the junction of rectum and genitourinary tract. Better imaging techniques, and a better knowledge of the anatomy and physiology of the pelvic structures at birth have refined diagnosis and initial management, and the analysis of large series of patients allows better prediction of associated anomalies and functional prognosis. The main concerns for the surgeon in correcting these anomalies are bowel control, urinary control, and sexual function. With early diagnosis, management of associated anomalies and efficient meticulous surgical repair, patients have the best chance for a good functional outcome. Fecal and urinary incontinence can occur even with an excellent anatomic repair, due mainly to associated problems such as a poorly developed sacrum, deficient nerve supply, and spinal cord anomalies. For these patients, an effective bowel management program, including enema and dietary restrictions has been devised to improve their quality of life
Ethanol‐Lock Therapy for the Prevention of Central Venous Access Device Infections in Pediatric Patients With Intestinal Failure
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141158/1/jpen0067.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141158/2/jpen0067-sup-0001.pd
Cardiovascular magnetic resonance in patients with pectus excavatum compared with normal controls
<p>Abstract</p> <p>Purpose</p> <p>To assess cardiothoracic structure and function in patients with pectus excavatum compared with control subjects using cardiovascular magnetic resonance imaging (CMR).</p> <p>Method</p> <p>Thirty patients with pectus excavatum deformity (23 men, 7 women, age range: 14-67 years) underwent CMR using 1.5-Tesla scanner (Siemens) and were compared to 25 healthy controls (18 men, 7 women, age range 18-50 years). The CMR protocol included cardiac cine images, pulmonary artery flow quantification, time resolved 3D contrast enhanced MR angiography (CEMRA) and high spatial resolution CEMRA. Chest wall indices including maximum transverse diameter, pectus index (PI), and chest-flatness were measured in all subjects. Left and right ventricular ejection fractions (LVEF, RVEF), ventricular long and short dimensions (LD, SD), mid-ventricle myocardial shortening, pulmonary-systemic circulation time, and pulmonary artery flow were quantified.</p> <p>Results</p> <p>In patients with pectus excavatum, the pectus index was 9.3 ± 5.0 versus 2.8 ± 0.4 in controls (P < 0.001). No significant differences between pectus excavatum patients and controls were found in LV ejection fraction, LV myocardial shortening, pulmonary-systemic circulation time or pulmonary flow indices. In pectus excavatum, resting RV ejection fraction was reduced (53.9 ± 9.6 versus 60.5 ± 9.5; P = 0.013), RVSD was reduced (P < 0.05) both at end diastole and systole, RVLD was increased at end diastole (P < 0.05) reflecting geometric distortion of the RV due to sternal compression.</p> <p>Conclusion</p> <p>Depression of the sternum in pectus excavatum patients distorts RV geometry. Resting RVEF was reduced by 6% of the control value, suggesting that these geometrical changes may influence myocardial performance. Resting LV function, pulmonary circulation times and pulmonary vascular anatomy and perfusion indices were no different to controls.</p
The effects of long-term total parenteral nutrition on gut mucosal immunity in children with short bowel syndrome: a systematic review
BACKGROUND: Short bowel syndrome (SBS) is defined as the malabsorptive state that often follows massive resection of the small intestine. Most cases originate in the newborn period and result from congenital anomalies. It is associated with a high morbidity, is potentially lethal and often requires months, sometimes years, in the hospital and home on total parenteral nutrition (TPN). Long-term survival without parenteral nutrition depends upon establishing enteral nutrition and the process of intestinal adaptation through which the remaining small bowel gradually increases its absorptive capacity. The purpose of this article is to perform a descriptive systematic review of the published articles on the effects of TPN on the intestinal immune system investigating whether long-term TPN induces bacterial translocation, decreases secretory immunoglobulin A (S-IgA), impairs intestinal immunity, and changes mucosal architecture in children with SBS. METHODS: The databases of OVID, such as MEDLINE and CINAHL, Cochran Library, and Evidence-Based Medicine were searched for articles published from 1990 to 2001. Search terms were total parenteral nutrition, children, bacterial translocation, small bowel syndrome, short gut syndrome, intestinal immunity, gut permeability, sepsis, hyperglycemia, immunonutrition, glutamine, enteral tube feeding, and systematic reviews. The goal was to include all clinical studies conducted in children directly addressing the effects of TPN on gut immunity. RESULTS: A total of 13 studies were identified. These 13 studies included a total of 414 infants and children between the ages approximately 4 months to 17 years old, and 16 healthy adults as controls; and they varied in design and were conducted in several disciplines. The results were integrated into common themes. Five themes were identified: 1) sepsis, 2) impaired immune functions: In vitro studies, 3) mortality, 4) villous atrophy, 5) duration of dependency on TPN after bowel resection. CONCLUSION: Based on this exhaustive literature review, there is no direct evidence suggesting that TPN promotes bacterial overgrowth, impairs neutrophil functions, inhibits blood's bactericidal effect, causes villous atrophy, or causes to death in human model. The hypothesis relating negative effects of TPN on gut immunity remains attractive, but unproven. Enteral nutrition is cheaper, but no safer than TPN. Based on the current evidence, TPN seems to be safe and a life saving solution
- …